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Abstract

We consider semidiscrete and fully discrete conservative finite volume schemes approxi-
mating the solution to one dimensional scalar conservation law. We show that all E-schemes
are associated with a discrete kinetic formulation with a nonnegative kinetic defect measure.
This construction provides an alternative proof of the discrete local entropy inequalities with
simple expressions of the discrete entropy fluxes. In contrast to the known results which are
restricted to CFL of the form λQ ≤ 1/2, our proof holds under “sharp” CFL conditions.

1 Introduction

We consider conservative schemes approximating the scalar conservation law

∂

∂t
u +

∂

∂x
A(u) = 0, (1.1)

u(t = 0, x) = u0(x) ∈ L1 ∩ L∞(R). (1.2)

We assume and denote
A(0) = 0, a(·) = A′(·).

As usual [6], [17], (1.1) is completed by the family of entropy inequalities; for any convex function
S, there holds

∂

∂t
S(u) +

∂

∂x
ηS(u) ≤ 0, (1.3)

with ηS(u) =
∫ u
0 S′(ξ) a(ξ) dξ.

The purpose of this paper is to give new proofs under improved CFL conditions for dis-
crete local entropy inequalities for a wide class of conservative entropic schemes for (1.1): the
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E-Schemes (see [14]), and to investigate the connection between these schemes and the discretiza-
tion of the kinetic formulation of the conservation law as introduced in [13], [12]. In fact the
proofs of the local entropy inequalities follow (as in the continuous case) from the positiveness
of the defect measure appearing in the discrete kinetic formulation of the schemes.

In order to describe our results we introduce the following notation for the discretization. For
simplicity we take a uniform mesh, but the analysis covers the nonuniform case with appropiate
modifications, cf Remark 3.5.

• h > 0 is the uniform mesh size,

• xi+1/2 = (i + 1/2)h, i ∈ Z, are the cell interfaces,

• Ci denotes the cell (xi−1/2, xi+1/2),

• ∆t is the time step, tn = n∆t,

• vi(t) (resp. vn
i ) denotes the solution to the numerical scheme,

• λ = ∆t
h .

The principle of the finite volume method consists in conservation approximations of the solution
cell-averages

ui(t) =
1
hi

∫

Ci

u(t, x) dx, (semidiscrete case),

un
i =

1
hi

∫

Ci

u(tn, x) dx, (fully discrete case).

We study both semidiscrete and fully discrete conservative schemes based on a two point nu-
merical flux A = A(u, v). It is chosen so that the numerical fluxes, called below Ai+1/2(t),

approximate the exact fluxes A
(
u(t, xi+1/2)

)
. We thus require the numerical fluxes to be con-

sistent, i.e., A(u, u) = A(u) ([8], [9], [10], [11]). The semidiscrete scheme is defined by

h
d

dt
vi(t)+Ai+1/2(t)−Ai−1/2(t) = 0, i ∈ Z,

vi(t = 0) = v0
i ∈ l1(Z) given,

Ai+1/2(t) = A(vi(t), vi+1(t)).

(1.4)

The corresponding fully discrete scheme that we consider is

vn+1
i − vn

i +λ
(
An

i+1/2 −An
i−1/2

)
= 0, i ∈ Z,

vi(t = 0) = v0
i ∈ l1(Z) given,

An
i+1/2 = A(vn

i , vn
i+1),

(1.5)

where A is the same numerical flux.
Local entropy inequalities. It is well known that a key property that guarantees the convergence
of the schemes to the unique entropy solution of the conservation law is to satisfy a discrete
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version of the entropy inequalities associated with (1.1). Namely, we are interested in schemes
(1.4) for which in-cell entropy inequalities hold, i.e. for any convex function S, there holds

h
d

dt
S(vi(t) ) + ηi+1/2 − ηi−1/2 ≤ 0,

ηi+1/2 = η(S; vi(t), vi+1(t))
(1.6)

for some appropriate entropy discrete flux function η(S ; u, v). For fully discrete schemes we
require

S(vn+1
i )− S(vn

i ) + λ
(
ηn

i+1/2 − ηn
i−1/2

) ≤ 0, i ∈ Z. (1.7)

A related class of schemes are the E-schemes introduced by Osher [14] in the semidiscrete case.
These are the schemes for which the Lipschitz continuous function A(u, v) satisfies

A(u, v) ≤ A(ξ), for u ≤ ξ ≤ v,

A(u, v) ≥ A(ξ), for v ≤ ξ ≤ u.
(1.8)

In Osher [14] was shown that (1.6) follows from the the E-property for the flux. In the fully
discrete case Tadmor [18] showed that, under certain CFL limitations, E-schemes satisfy (1.7).
Tadmor’s seminal approach requires to write (1.5) in its viscosity form

vn+1
i =vn

i −
λ

2
(
A(vn

i+1)−A(vn
i−1)

)

+ Qi+1/2

(
vn
i+1 − vn

i

)−Qi−1/2

(
vn
i − vn

i−1

) (1.9)

where the viscosity coefficient Qi+1/2 is

Qi+1/2 = Q(vn
i , vn

i+1)

Q(u, v) = λ
A(u) + A(v)− 2A(u, v)

v − u
.

(1.10)

In [18] was shown that if A(u, v) satisfies the E-property and the CFL conditions

Qi+1/2 ≤
1
2
,

λ max
ξ
|a(ξ)| ≤ 1

2
, .

(1.11)

are met, then the fully discrete scheme (1.5) satisfies the in-cell entropy inequalities (1.7). Later
this proof was extended to the multi-dimensional finite volume setting in [5], [1], see also [15]
for an improved version. As it was already noticed in [18], (1.11) are stronger than one would
like to have. Indeed, consider the two limiting cases for Q that correspond to Godunov and
Lax-Friedrichs schemes (denote by QG and QLF their numerical viscosity coefficient). Then
one can check that for all E-schemes, [14], [18], QG ≤ Q, but Godunov’s scheme is known to
satisfy (1.7) under the sharp CFL: λ maxξ |a(ξ)| ≤ 1. In addition QLF ≡ 1, i.e. (1.11), is also
restrictive. The reason behind this restricted CFL is the method of proof in [18] which splits
the numerical cell in two half subcells and reduces the numerical viscosity of any E-scheme in
a convex combination of Godunov and modified Lax-Friedrichs schemes. This splitting in two
subcells avoids to analyse the interaction of waves but leads to the restricted CFL.
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In the sequel we show that indeed (1.11) can be relaxed to the “sharp” conditions

Qi+1/2 ≤ 1

λ max
ξ
|a(ξ)| ≤ 1 .

(1.12)

Our proofs do not rely on the above comparison with Godunov and modified Lax-Friedrichs,
rather it is based on the kinetic formulation of E-schemes that we present in the sequel.
Kinetic formulation. To each one of the schemes considered we will associate a discrete kinetic
scheme. To do that we first consider the kinetic formulation of the conservation law (1.1)
introduced in [13] (see also [16])

∂

∂t
f(x, t, ξ) + a(ξ)

∂

∂x
f(x, t, ξ) =

∂

∂ξ
m(x, t, ξ) . (1.13)

Then, f(x, t, ξ) = χ(ξ, u(x, t)) and m is a nonnegative bounded measure with compact support
with respect to ξ, if and only if

u(x, t) =
∫

R
f(x, t, ξ)dξ

is the unique entropy solution of the conservation law (1.1). The kinetic equation has incorpo-
rated all the entropy inequalities (1.3). We use the standard notation for the signed characteristic
function, a ∈ R,

χ(ξ, a) =





1 0 < ξ ≤ a,

−1 a ≤ ξ < 0,

0 otherwise .

(1.14)

For later reference note the following key property of χ that allows to derive (1.3) integrating
(1.14) against S′(ξ) dξ; for all the continuous functions S

∫
χ(ξ, a)S′(ξ)dξ = S(a)− S(0), ∀a ∈ R. (1.15)

One of the results of this paper is that, for any E-flux, an appropriate upwind discretization
of the linear transport part of (1.14), provides a discrete kinetic formulation. In other words
when vi(t), i ∈ Z is given through (1.4), then there also holds

h
∂

∂t
χ(ξ, vi(t)) +

[
a+(ξ, vi, vi+1)χ

(
ξ, vi(t)

)
− a−(ξ, vi, vi+1)χ

(
ξ, vi+1(t)

)]

− [
a+(ξ, vi−1, vi)χ

(
ξ, vi−1(t)

)
− a−(ξ, vi−1, vi)χ

(
ξ, vi(t)

)]
=

∂

∂ξ
mi(t, ξ),

(1.16)

where the functions in the right hand side —called the kinetic defect measures— satisfy

mi(t, ξ) = m−(ξ, vi−1, vi) + m+(ξ, vi, vi+1), m±(·, u, v) ≥ 0
m±(·, u, v) vanish outside of the non ordered interval (u, v),

(1.17)

and the numerical speeds a±, bounded by quantities of order ∂
∂uA, ∂

∂vA or a(ξ), satisfy

a±(ξ, u, v) ≥ 0,

a+(ξ, u, v) = max(0, a(ξ)), a−(ξ, u, v) = max(0,−a(ξ)) for ξ /∈ (u, v),

A(u, v) =
∫

R
a+(ξ, u, v)χ(ξ, u) dξ −

∫

R
a−(ξ, u, v) χ(ξ, v) dξ .

(1.18)
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Therefore a simple ξ integration shows that from a formula (1.17) one derives a semidiscrete
scheme (1.4), and the entropy flux in (1.6) follows by integrating (1.17) against S′(ξ)

η(S; u, v) =
∫

R
a+(ξ, u, v) S′(ξ) χ(ξ, u) dξ −

∫

R
a−(ξ, u, v) S′(ξ) χ(ξ, v) dξ . (1.19)

At this level one can observe that, for an E-scheme, the S-linear entropy flux is not unique and
several choices of a+, a− are possible that lead to different discrete entropy fluxes.

Notice that the most natural and simple example from this point of view is Engquist-Osher
scheme [7] where (1.17) holds with

a+(ξ) = max(0, a(ξ)), a−(ξ) = max(0,−a(ξ)),
AEO(u, v) = A+(u) + A−(v),

A+(u) =
∫ u

0
a+(ξ) dξ, A−(u) =

∫ u

0
a−(ξ) dξ.

(1.20)

This case has the remarkable property that the discrete kinetic formulation (1.17) is a linear
equation on χ, a fundamental property in the continuous formulation (1.14) which allows for
instance a convergence proof of Engquist-Osher scheme based on merely L∞ bounds (see [2]).
This simple case is also a model for kinetic schemes for systems of conservation laws ([3], [19],
[16]) and allows to give another convergence proof [20]. An alternative proof based on the
framework of [13] and a kinetic formulation of Godunov’s finite volume scheme was given in
[21].

To recover fully discrete schemes (1.5) by a kinetic formulation is more intricate and therefore
we may have to introduce more general discetizations of the linear transport part of (1.14). We
thus define,

Definition 1.1. The function a(ξ, u, v) which is integrable and has compact support with respect
to ξ is called a Discrete Kinetic Flux corresponding to A(u, v) if

∫

R
a(ξ, u, v)dξ = A(u, v) ,

a(ξ, u, u) = a(ξ)χ(ξ, u) = A′(ξ)χ(ξ, u) .

(1.21)

In the semi-discrete case our choice can be e.g., a(ξ, u, v) = a+(ξ, u, v) χ(ξ, u)+a−(ξ, u, v) χ(ξ, v)
but in the fully dicrete case we have to consider more general representation formulas.

In Section 2 we investigate the semidiscrete scheme (1.4) and we prove in Theorem 2.1, that
E-schemes are characterized by the existence of a semidiscrete kinetic formulations (1.17). In
fact we show first that the existence of a more general discrete kinetic formulation, cf. (2.1),
is equivalent to the fact that A(u, v) is an E-flux. Towards this goal a crucial step is that the
integrant of the Discrete Kinetic Flux, defined in (2.8), should satisfy the requirements provided
by Lemma 2.4 and further by Proposition 2.6.

In Section 3 we investigate the fully discrete scheme (1.5) and the existence of a Discrete
Kinetic Flux corresponding to A(u, v), a(ξ, u, v), such that

χ(ξ, vn+1
i )− χ(ξ, vn

i ) + λ[a(ξ, vn
i , vn

i+1)− a(ξ, vn
i−1, v

n
i )]

=
∂

∂ξ
mn

i (ξ),
(1.22)
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with mn
i a nonnegative function as in (1.18). Our main result is that if A(u, v) is an E-flux and

the CFL conditions (1.13) are met then we can construct a(ξ, u, v) = aλ(ξ, u, v) such that (1.23)
is a kinetic formulation of (1.5) with mn

i nonnegative, Theorem 3.1. Then the in-cell entropy
inequalities (1.7) follow with entropy flux ηi+1/2 = η(λ, S ; u, v) =

∫
R S′(ξ)aλ(ξ, u, v) dξ. The

proof is constructive and the conditions on a(ξ, u, v) derived in Section 2 for the semidiscrete
problem are particularly useful in the analysis.

In Section 4 we give the construction, and additional explicit formulas, for Engquist-Osher
scheme. This section can be viewed as a model for the generic construction in Section 2.

2 Semidiscrete schemes

In this section we investigate general three point semidiscrete scheme (1.4) with consistent flux
A(u, v). We prove the equivalence between three properties; the E-property, the possibility to
write a kinetic discretization as (1.17), and the existence of discrete entropy fluxes in (1.6).

Namely, the main result of this section is the

Theorem 2.1. Consider the semidiscrete scheme (1.4) with a consistent discrete flux A(u, v).
The following three properties are equivalent

(i) A(u, v) is an E-flux as defined in (1.8);

(ii) all the in-cell entropy inequalities (1.6), i.e. for any convex function S, are satisfied

(iii) there exists a Discrete Kinetic Flux a(ξ, u, v) corresponding to A(u, v), and nonnegative
functions mi satisfying (1.18), such that the kinetic formulation of (1.4) holds

h
∂

∂t
χ(ξ, vi(t)) + [a(ξ, vi, vi+1)− a(ξ, vi−1, vi)] =

∂

∂ξ
mi(t, ξ). (2.1)

The entropy fluxes in (1.6), as well as a(ξ, u, v), is not unique and a possible relation is

η(S;u, v) =
∫

R
S′(ξ) a(ξ, u, v) dξ.

In addition a(ξ, u, v) admits an “upwind” splitting of the form (1.19).

We first recall the equivalence between properties (i) and (ii) for the sake of completeness.
The property (iii) is then derived in several steps. We conclude this section with an explicit
construction of Discrete Kinetic Fluxes like (1.19).

Proof of Theorem 2.1, (i) ⇔ (ii). We depart from (ii). Multiplying (1.4) by S′(vi(t)), we obtain
that the in-cell entropy inequality is equivalent to the existence of η(S, ·, ·) such that, for all
values vi, vi±1 and all convex S, we have

η(S; vi, vi+1)− η(S; vi−1, vi) ≤ S′(vi)[A(vi, vi+1)−A(vi−1, vi)],

which is equivalent to
{

η(S; vi, vi+1)− η(S; vi, vi) ≤ S′(vi)[A(vi, vi+1)−A(vi)],
η(S; vi, vi)− η(S; vi−1, vi) ≤ S′(vi)[A(vi)−A(vi−1, vi)],
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which is again equivalent, for all u, v, and S convex, to the existence of a function η(S, ·, ·) such
that

η(S; v, v)− S′(v)[A(v)−A(u, v)] ≤ η(S;u, v) ≤ S′(u)[A(u, v)−A(u)] + η(S;u, u).

Denoting η(S; v) = η(S; v, v), the above inequality is obviously equivalent to (and then the
choice of η(S; u, v) is anything in-between)

η(S; v)− S′(v)[A(v)−A(u, v)] ≤ S′(u)[A(u, v)−A(u)] + η(S;u),

or, in other words,

η(S; v)− η(S;u) ≤ S′(v)A(v)− S′(u)A(u)−A(u, v)[S′(v)− S′(u)],

which is equivalent to




∂

∂u
η(S; u) = S′(u)a(u),

∫ u

v
S′′(ζ)A(ζ)dζ ≤ A(u, v)[S′(u)− S′(v)],

and it remains to choose, as a generating family for S convex, the family S′′(ζ) = δ(ζ − ξ) to
recover the equivalence with the E-property (1.8).

We would like to conclude with noticing that the entropy fluxes are automatically consistent,
i.e. the relation ∂

∂uη(S; u, u) = S′(u)a(u) is derived from (ii).

We now introduce some steps towards the semidiscrete kinetic formulation (iii). We start
with

Lemma 2.1. Let a(ξ, u, v) be a Discrete Kinetic Flux corresponding to A(u, v), we have

mi(t, ξ) = m+(ξ; vi, vi+1) + m−(ξ; vi−1, vi), (2.2)

with

m+(ξ;u, v) =
∫ ξ

−∞
δ(ζ − u)[A(u)−A(u, v)] dζ +

∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, u)] dζ

m−(ξ;u, v) = −
∫ ξ

−∞
δ(ζ − v)[A(v)−A(u, v)] dζ −

∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ .

(2.3)

Moreover mi is nonnegative for any value of its arguments if and only if both m+ and m− are
nonnegative for any value of their arguments.

Proof. It is a simple matter to check that

∂

∂t
χ(ξ, vi(t)) = δ(ξ − vi(t))

d

dt
vi(t) .

Then using the above formula and (1.4) in (2.1), we get

−δ(ξ − vi(t)) [Ai+1/2 −Ai−1/2] + [a(ξ, vi(t), vi+1(t))− a(ξ, vi−1(t), vi(t))]

=
∂

∂ξ
mi(ξ, t),
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or equivalently,

∂

∂ξ
mi(ξ, t) =δ(ξ − vi(t)) [ (A(vi(t))−Ai+1/2)− ((A(vi(t))−Ai−1/2) ]

+ [a(ξ, vi(t), vi+1(t))− a(ξ)χ(ξ, vi(t))]
− [a(ξ, vi−1(t), vi(t))− a(ξ)χ(ξ, vi(t)) ] .

Since we want mi to have bounded support, we can integrate to obtain,

mi(ξ, t) =
∫ ξ

−∞
δ(ζ − vi(t)) [ (A(vi(t))−Ai+1/2)− ((A(vi(t))−Ai−1/2) ] dζ

+
∫ ξ

−∞
[a(ζ, vi(t), vi+1(t))− a(ζ)χ(ζ, vi(t))]dζ

−
∫ ξ

−∞
[a(ζ, vi−1(t), vi(t))− a(ζ)χ(ζ, vi(t)) ] dζ

=m+(ξ, vi(t), vi+1(t)) + m−(ξ, vi−1(t), vi(t)).

By the definition of the discrete kinetic fluxes (Definition 1.1) and the consistency of the flux
A(u, v) we see that

m+(ξ, v, v) = 0, m−(ξ, v, v) = 0,

thus m is nonnegative if and only if both m+ and m− are nonnegative.

Remark 2.2. Since m±(+∞; u, v) = m±(−∞;u, v) = 0 we can see that (2.3) takes the form

m+(ξ;u, v) =
∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ for ξ < u

m+(ξ;u, v) =−
∫ +∞

ξ
[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ for u < ξ

m−(ξ;u, v) =−
∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ for ξ < v

m−(ξ;u, v) =
∫ +∞

ξ
[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ for v < ξ.

(2.4)

We proceed by further reducing the form of mi. We need some more notation. For u, v ∈ R
we denote by Iu,v the interval that they define. Also,

Iu,v = [m,M ], where m = min{u, v}, and M = max{u, v} . (2.5)

We then notice the idendity

χ(ξ, u) = χ(ξ, v) for ξ ∈ R \ Iu,v . (2.6)

Then one may check,
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Lemma 2.3. Assume that a(ξ, u, v) is a Discrete Kinetic Flux corresponding to A(u, v). If
m+ and m− are both nonnegative, then a(ξ, u, v) satisfies the consistency condition outside the
interval Iu,v :

a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v) ξ ∈ R \ Iu,v . (2.7)

Conversely, if (2.7) is satisfied then m+ and m− vanish (and therefore are nonnegative) outside
the interval Iu,v.

Proof. Assume first that ξ < m < 0 then χ(ξ, u) = χ(ξ, v) = 0. In addition both m+ and m−
are nonnegative therefore (2.4) implies that

∫ ξ

−∞
a(ζ, u, v) dζ = 0.

Since ξ is arbitrary a(ξ, u, v) = 0 for ξ < m < 0. Similarly, if ξ > M > 0, a(ξ, u, v) = 0. In the
case where M < 0 and M < ξ again by (2.4) we have

∫ +∞

ξ
[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ = 0.

Since M < ξ is arbitrary we conclude that a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v). The proof is
similar in the case ξ < m, m > 0.

In view of Lemma 2.3 we are able to define a function A(ξ, u, v) of three variables as

A(ξ, u, v) =
∫ ξ

−∞
a(ζ, u, v) dζ . (2.8)

It is to be noted that A(ξ, u, v) should not be confused with the discrete flux A(u, v), although
they are of course related depending on the values of ξ since by Definition 1.1

A(+∞, u, v) = A(u, v).

In the next lemma we derive conditions for the Discrete Kinetic Flux in Iu,v by using its integrant
A(ξ, u, v).

Lemma 2.4. Assume that a(ξ, u, v) is a Discrete Kinetic Flux corresponding to A(u, v) and
A(ξ, u, v) is defined by (2.8). Let m+ and m− be both nonnegative. Then the following conditions
are satisfied in the interval Iu,v

u ≤ ξ ≤ v

{
A(ξ) ≥ A(ξ, u, v) ≥ A(u, v) , when ξ ≥ 0,

0 ≥ A(ξ, u, v) ≥ A(u, v)−A(ξ) , when ξ < 0,
(2.9)

and

v ≤ ξ ≤ u

{
A(u, v) ≥ A(ξ, u, v) ≥ A(ξ) , when ξ ≥ 0,

A(u, v)−A(ξ) ≥ A(ξ, u, v) ≥ 0 , when ξ < 0,
(2.10)

Conversely, if (2.9), (2.10) are satisfied then m+ and m− are nonnegative in the interval Iu,v.
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Proof. We only treat the case u < ξ < v since the other is similar. Then, equations (2.3) imply

m+(ξ, u, v) = A(u)−A(u, v) +A(ξ, u, v)−
∫ ξ

−∞
a(ζ)χ(ζ, u) dζ , (2.11)

m−(ξ, u, v) = −A(ξ, u, v) +
∫ ξ

−∞
a(ζ)χ(ζ, v) dζ . (2.12)

But then it is easy to check that

−
∫ ξ

−∞
a(ζ)χ(ζ, u) dζ = A(ξ)1I{ξ<0} −A(u), (2.13)

and ∫ ξ

−∞
a(ζ)χ(ζ, v) dζ = A(ξ)1I{ξ>0} (2.14)

Since both m+ and m− should be nonnegative (2.9) follows. The converse is also immediate by
using the above identities.

Remark 2.5. From Lemma 2.3 we deduce that both m+ and m− are supported in Iu,v. Further
by the proof of the Lemma 2.4 we have the following formulas

m+(ξ;u, v) = A(ξ, u, v)−A(u, v) + A(ξ)1I{ξ<0},

u ≤ ξ ≤ v :
m−(ξ;u, v) = A(ξ)1I{ξ>0} −A(ξ, u, v),

(2.15)

and

m+(ξ;u, v) = A(ξ, u, v)−A(ξ)1I{ξ>0},

v ≤ ξ ≤ u :
m−(ξ;u, v) = A(u, v)−A(ξ, u, v)−A(ξ)1I{ξ<0}.

(2.16)

We have now the following result.

Proposition 2.6. Assume that we have at our disposal a Lipschitz function A(ξ, u, v) which
satisfies (2.9) and (2.10) and the endpoint values

for u ≤ v

{
A(u, u, v) = A(u)1I{u>0},
A(v, u, v) = A(u, v)−A(v)1I{v<0},

(2.17)

and

for v ≤ u

{
A(u, u, v) = A(u, v)−A(u)1I{u<0},
A(v, u, v) = A(v)1I{v>0}.

(2.18)

Then a(ξ, u, v) is well defined by

a(ξ, u, v) =
∂

∂ξ
A(ξ, u, v) ξ ∈ Iu,v

a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v) ξ ∈ R \ Iu,v .

(2.19)

In addition a(ξ, u, v) is a Discrete Kinetic Flux corresponding to A(u, v) and (2.1) is a kinetic
formulation of (1.4) with mi nonnegative.
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Proof. Having (2.8) and (2.6) in mind, we first extend A(ξ, u, v) outside the interval Iu,v by
letting

A(ξ, u, v) =
∫ ξ

−∞
a(ζ)χ(ζ, u)dζ, ξ ≤ m

and

A(ξ, u, v) =
∫ m

−∞
a(ζ)χ(ζ, u)dζ + A(M, u, v)−A(m,u, v) +

∫ ξ

M
a(ζ)χ(ζ, u)dζ, ξ ≥ M.

Then the function A(·, u, v), is a well defined, continuous function and a(ξ, u, v) is the derivative
of A(ξ, u, v), ξ ∈ R. Then it is easy to see that since A(ξ, u, v) satisfies (2.9) and (2.10) with
equalities at the endpoints of the interval Iu,v,

A(+∞, u, v) =
∫

R
a(ξ, u, v)dξ = A(u, v) ,

i.e., a(ξ, u, v) is a Discrete Kinetic Flux corresponding to A(u, v). The proof is complete in view
of Lemmas 2.3 and 2.4.

We are now ready to complete the proof the last equivalence in Theorem 2.1.

Proof of Theorem 2.1, (i) ⇔ (iii). Assume first (i), i.e. that A(u, v) is an E-flux. Then one
can construct a discrete kinetic flux as in Lemma 2.4 and Proposition 2.6. Indeed, one choice
of A(ξ, u, v) in Iu,v is

for u ≤ ξ ≤ v : A(ξ, u, v) = max{A(u, ξ) , A(u, v)} −A(ξ)1I{ξ<0}, (2.20)

and
for v ≤ ξ ≤ u : A(ξ, u, v) = min{A(ξ, v) , A(u, v)} −A(ξ)1I{ξ<0}. (2.21)

Then since A is an E-flux is is straightforward to verify that A(ξ, u, v) satisfies (2.9) and (2.10)
with equalities at the endpoints of the interval Iu,v. Therefore Proposition 2.6 implies that (iii)
holds.

Conversely, if (iii) holds with m nonnegative then A(ξ, u, v) defined in (2.8) should satisfy
(2.9) and (2.10). But then necessarily A(u, v) satisfies,

if u ≤ ξ ≤ v : A(ξ) ≥ A(u, v) ,

if v ≤ ξ ≤ u : A(u, v) ≥ A(ξ) ,

i.e., A(u, v) is an E-flux and (i) is proved.

End of the proof of Theorem 2.1. I remains to consider another choice in Lemma 2.4 and
Proposition 2.6 in order to obtain the refined kinetic formulation (1.17) with signed speeds. We
built an admissible (i.e that satisfies (2.9), (2.10), (2.17), (2.18)) Lipschitz function A(ξ, u, v)
which is nonincreasing in ξ for u < v and increasing in ξ for v < u. We give the formula and
skip the tedious but easy proof.

u ≤ ξ ≤ v : A(ξ, u, v) =





max{A(u, v) , min
max(0,u)≤ζ≤ξ

A(u, ζ)} when ξ ≥ 0,

max
ξ≤ζ≤min(0,v)

{max
(
A(u, v) , A(u, ζ)

)
−A(ζ)} when ξ < 0,

(2.22)
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v ≤ ξ ≤ u : A(ξ, u, v) =





min{A(u, v) , max
max(0,v)≤ζ≤ξ

A(ζ, v)} when ξ ≥ 0,

min
ξ≤ζ≤min(0,u)

{min
(
A(u, v) , A(ζ, v)

)
−A(ζ)} when ξ < 0.

(2.23)
Thanks to the monotonicity of A(ξ, u, v), one readily checks the that indeed (1.17) holds with

a±(ξ, u, v) = | ∂

∂ξ
A(ξ, u, v)| for ξ ∈ Iu,v,

a±(ξ, u, v) = a±(ξ) for ξ ∈ R \ Iu,v.

3 Fully discrete schemes

For a given fully discrete scheme (1.5) we will associate a discrete kinetic formulation as follows.
Assume that we are given approximations at level n : vn

i , i ∈ Z . Define then the approximations
at the next level as

fn+1
i = χ(ξ, vn

i )− λ[a(ξ, vn
i , vn

i+1)− a(ξ, vn
i−1, v

n
i )] and

vn+1
i =

∫
fn+1

i (ξ)dξ.
(3.1)

We call (3.1) a kinetic formulation of the difference scheme (1.5) if a(ξ, u, v) is a Discrete Kinetic
Flux corresponding to A(u, v) and there exist measures with compact support with respect to
ξ, mn

i , such that

χ(ξ, vn+1
i )− fn+1

i =
∂

∂ξ
mn

i (ξ) . (3.2)

Then integrating (3.2) with respect to ξ we recover the scheme (1.5). In such a case the discrete
kinetic scheme can be written in a compact form as

χ(ξ, vn+1
i )− χ(ξ, vn

i ) + λ[a(ξ, vn
i , vn

i+1)− a(ξ, vn
i−1, v

n
i )]

=
∂

∂ξ
mn

i (ξ) .
(3.3)

In this section we will investigate under what conditions on A(u, v) and a(ξ, u, v) the scheme
(3.1) is a kinetic formulation of (1.5) with nonnegative mn

i (ξ), i.e., under what conditions (3.3)
holds with mn

i (ξ) nonnegative. This will imply that the scheme satisfies all local discrete entropy
inequalities:

Theorem 3.1. Consider a conservative scheme (1.5) with a consistent discrete flux A = A(u, v).
Assume the following

(i) A(u, v) is an E-flux;

(ii) the CFL condition (1.13) is satisfied.
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Then there exists a Discrete Kinetic Flux corresponding to A(u, v), a = aλ(ξ, u, v), and a non-
negative measure m such that (3.3) is a kinetic formulation of (1.5). Consequently, all the in-cell
entropy inequalities, i.e. for any convex function S, hold true

S
(
vn+1
i

)
− S

(
vn
i

)
+ λ

[
ηn

i+1/2 − ηn
i−1/2

]
≤ 0,

with discrete entropy flux

ηn
i+1/2 = η(S; vn

i , vn
i+1) η(S; u, v) =

∫

R
S′(ξ) a(ξ, u, v) dξ.

Remark 3.1. In our construction, the Discrete Kinetic Flux depends on λ. Especially we do not
answer the open question to know wether, for E-schemes and under the CFL condition (1.13),
there are in-cell entropy inequalities with η(S) independent of λ. Because of this difference,
it seems that a reverse theorem is wrong; the existence of a fully discrete kinetic formulation
with aλ, or of in-cell entropy inequalities with ηλ(S), do not imply the E-property. Note that
still in the construction of [18] the discrete entropy flux depends on λ. We recall that a weaker
property, called ‘ordered schemes’ (restrict the E-property to ξ = u or v), is enough to have a
TVD scheme, see [16].

As in the previous section, for u, v ∈ R we denote by Iu,v the interval that they define. We
will need the following lemmas.

Lemma 3.2. Let a(ξ, u, v) be a Discrete Kinetic Flux corresponding to A(u, v), and assume that
(3.3) is a kinetic formulation of (1.5). Setting

Ivn
i ,vn+1

i
= [m,M ], where m = min{vn

i , vn+1
i }, and M = max{vn

i , vn+1
i } , (3.4)

we have for ξ ∈ R \ Ivn
i ,vn+1

i
:

m(ξ; vn
i−1, v

n
i , vn

i+1) =λ

∫ ξ

−∞
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ for ξ < m

m(ξ; vn
i−1, v

n
i , vn

i+1) =− λ

∫ +∞

ξ
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ for M < ξ

(3.5)

Proof. Assume first that ξ < m < 0 then χ(ξ, vn+1
i ) = χ(ξ, vn

i ) = 0. Also if ξ < m and m > 0
then for ξ < 0, χ(ξ, vn+1

i ) = χ(ξ, vn
i ) = 0 and for ξ > 0, χ(ξ, vn+1

i ) = χ(ξ, vn
i ) = 1. Therefore

∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vn
i ) dζ = 0, for ξ < m .

Similarly, we show
∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vn
i ) dζ = vn+1

i )− vn
i , for ξ > M ,

and therefore (3.5) follows in view of (1.5) and Definition 1.1.

13



Lemma 3.3. Under the assumptions of Lemma 3.2 we have for ξ ∈ Ivn
i ,vn+1

i
:

m(ξ; vn
i−1, v

n
i , vn

i+1) =ξ − vn
i + λ

∫ ξ

−∞
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ for vn

i < ξ

m(ξ; vn
i−1, v

n
i , vn

i+1) =vn
i − ξ − λ

∫ +∞

ξ
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ for ξ < vn

i

(3.6)

Proof. Assume first that vn
i < ξ < vn+1

i . Then one can verify that,

∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vn
i ) dζ = ξ − vn

i ,

which implies the first equality of (3.6). Similarly, there holds,

∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vn
i ) dζ = vn+1

i − ξ, for vn+1
i < ξ < vn

i ,

and in this case (3.6) follows again in view of (1.5) and Definition 1.1.
We are ready now to prove the main result in this section.
Proof of Theorem 3.1. For the given discrete flux A(u, v) we first observe that if a(ξ, u, v)

is a function that is constructed according to Proposition 2.6, i.e. if a(ξ, u, v) is a kinetic flux
for the semidiscrete scheme, then m(ξ; vn

i−1, v
n
i , vn

i+1) in Lemma 3.2 are nonnegative. Indeed if
ξ < m then ξ < vn

i and

m(ξ; vn
i−1, v

n
i , vn

i+1) = m+(ξ; vn
i , vn

i+1) + m−(ξ; vn
i−1, v

n
i ) ,

where m+ and m− are defined in (2.4) for ξ < vn
i . A similar relation holds for ξ > M. The same

reasoning implies that
∫ z

−∞
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ ≥ 0 for all z < vn

i

and

−
∫ +∞

z
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ ≥ 0 for all vn

i < z .

Therefore, in such a case, m(ξ; vn
i−1, v

n
i , vn

i+1) in Lemma 3.3 will be nonnegative if we are able
to show that

ξ − vn
i + λ

∫ ξ

vn
i

[ a(ζ, vn
i , vn

i+1)− a(ζ, vn
i−1, v

n
i )]dζ ≥ 0 for vn

i < ξ < vn+1
i ,

vn
i − ξ − λ

∫ vn
i

ξ
[ a(ζ, vn

i , vn
i+1)− a(ζ, vn

i−1, v
n
i )] dζ ≥ 0 for vn+1

i < ξ < vn
i .

(3.7)

Next, for u, v, v ∈ R, let
u = u− λ

(A(u, v)−A(v, u)
)
. (3.8)

The proof of the theorem is therefore reduced on finding a discrete kinetic flux a(ξ, u, v) such
that,
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a) a(ξ, u, v) satisfies the requirements of Proposition 2.6,

b) for any u, v, v ∈ R

M(v, u, v) = ξ − u + λ

∫ ξ

u
[ a(ζ, u, v)− a(ζ, v, u)]dζ ≥ 0 for u < ξ < u

M(v, u, v) = u− ξ − λ

∫ u

ξ
[ a(ζ, u, v)− a(ζ, v, u)] dζ ≥ 0 for u < ξ < u.

In the sequel we show that a discrete kinetic flux that satisfies a) and b) indeed exists. To
motivate our construction we will consider first the cases

(I) u < ξ < u, ξ < {v, v}
(II) u < ξ < u, {v, v} < ξ.

In case (I) we have ( A(ξ, u, v) is defined in (2.8))

M(v, u, v) =ξ − u + λ
(
A(ξ, u, v)−A(u, u, v)−A(ξ, v, u) +A(u, v, u)

)

=ξ − u + λ
(
A(ξ, u, v)−A(ξ, v, u)

)

=
1
2
(ξ − u) + λA(ξ, u, v)− λ

2

[
A(u) + A(ξ)

]

+
1
2
(ξ − u)− λA(ξ, v, u) +

λ

2

[
A(u) + A(ξ)

]
.

Where we have used that, cf. Proposition 2.6,

A(u, u, v) = A(u, v, u) =
∫ u

−∞
a(ζ)χ(ζ, u) dζ .

Assume for a moment that ξ > 0. Then M(v, u, v) is nonnegative if

1
2
(u− ξ) +

λ

2

[
A(u) + A(ξ)

]
≤ λA(ξ, u, v)

λA(ξ, v, u) ≤ 1
2
(ξ − u) +

λ

2

[
A(u) + A(ξ)

]
.

(3.9)

Similarly, in the case (II) we have

M(v, u, v) =u− ξ − λA(u, u, v) + λA(ξ, u, v) + λA(u, v, u)− λA(ξ, v, u))
=u− ξ − λA(u, v) + λA(ξ, u, v) + λA(v, u)− λA(ξ, v, u)

=
1
2
(u− ξ)− λA(u, v) + λA(ξ, u, v) +

λ

2

[
A(u)−A(ξ)

]

+
1
2
(u− ξ) + λA(v, u)− λA(ξ, v, u)− λ

2

[
A(u)−A(ξ)

]
.

Where we have used that, cf. Proposition 2.6,

A(u, u, v) = A(u, v)−
∫ +∞

u
a(ζ)χ(ζ, u) dζ ,
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and the similar relation for A(u, v, u) . Still assuming ξ > 0, then M(v, u, v) will be nonnegative
if

1
2
(ξ − u) + λA(u, v)− λ

2

[
A(u)−A(ξ)

]
≤ λA(ξ, u, v)

λA(ξ, v, u) ≤ 1
2
(u− ξ) + λA(v, u)− λ

2

[
A(u)−A(ξ)

]
.

(3.10)

Relations (3.9) and (3.10) suggest the following

for u ≤ ξ ≤ v :
1
2
(u−ξ)+

λ

2

[
A(u)+A(ξ)

]
≤ λA(ξ, u, v) ≤ 1

2
(v−ξ)+λA(u, v)−λ

2

[
A(v)−A(ξ)

]
,

(3.11)
and

for v ≤ ξ ≤ u :
1
2
(ξ−u)+λA(u, v)−λ

2

[
A(u)−A(ξ)

]
≤ λA(ξ, u, v) ≤ 1

2
(ξ−v)+

λ

2

[
A(v)+A(ξ)

]
.

(3.12)
It will be convenient to introduce the following notation

λAv>u(ξ) =
1
2
(v − ξ) + λA(u, v)− λ

2

[
A(v)−A(ξ)

]

λAv>u(ξ) =
1
2
(u− ξ) +

λ

2

[
A(u) + A(ξ)

] (3.13)

and

λAu>v(ξ) =
1
2
(ξ − v) +

λ

2

[
A(v) + A(ξ)

]

λAu>v(ξ) =
1
2
(ξ − u) + λA(u, v)− λ

2

[
A(u)−A(ξ)

]
.

(3.14)

A crucial fact is that, despite the E-property, we have indeed

Av>u ≤ Av>u and Au>v ≤ Au>v .

This is because by (1.13),

λAv>u − λAv>u =
1
2
(v − u) + λA(u, v)− λ

2
[
A(v) + A(u)

]
=

1
2
(v − u)

[
1−Q(u, v)

] ≥ 0,

and

λAu>v − λAu>v =
1
2
(u− v)− λA(u, v) +

λ

2
[
A(v) + A(u)

]
=

1
2
(u− v)

[
1−Q(u, v)

] ≥ 0.

Next, since we are looking for a flux that will satisfy (2.9) and (2.10), it is useful for the sequel
to notice that (1.13) implies that for ξ ∈ Iu,v

Av>u(ξ) ≥ A(u, v), Av>u(ξ) ≤ A(ξ) (3.15)

and
Au>v(ξ) ≥ A(ξ) Au>v(ξ) ≤ A(u, v) . (3.16)
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We are ready now to define

Bv>u(ξ) = min{Av>u(ξ), A(ξ)} for u ≤ ξ ≤ v

Bu>v(ξ) = min{Au>v(ξ), A(u, v)} for v ≤ ξ ≤ u .
(3.17)

Then, since A(u, v) is an E-flux the above relationships imply,

A(u, v) ≤ Bv>u(ξ) ≤ A(ξ) and Av>u(ξ) ≤ Bv>u(ξ) ≤ Av>u(ξ) . (3.18)

In addition

Bv>u(u) = min{Av>u(u), A(u)} = A(u) and Bv>u(v) = min{A(u, v), A(v)} = A(u, v). (3.19)

Where in the first equality in (3.19) we used λAv>u(u) − λA(u) = 1
2(v − u)

[
1 − Q(u, v)

] ≥ 0 .
Similar relations hold for Bu>v. Hence, in the cases under consideration and for ξ > 0, it suffices
to define in Iu,v,

A(ξ, u, v) =

{
Bv>u(ξ) for u ≤ ξ ≤ v, ξ > 0
Bu>v(ξ) for v ≤ ξ ≤ u, ξ > 0 .

(3.20)

It is clear now that the right extension of A(ξ, u, v) when ξ < 0 is

A(ξ, u, v) =

{
Bv>u(ξ)−A(ξ) for u ≤ ξ ≤ v, ξ < 0
Bu>v(ξ)−A(ξ) for v ≤ ξ ≤ u, ξ < 0 .

(3.21)

It is straightforward to see that this choice satisfies a) and b) in the cases (I) and (II) and for
ξ < 0.

In all the other cases the above choice of A(ξ, u, v) satisfies a) and b). Property a) is clear in
any case. Property b) is a consequence of (3.18) (and its corresponding relation for u > v) and
of the CFL condition λ maxξ |a(ξ)| ≤ 1. To illustrate this we consider only the case u ≤ ξ ≤ u,
v < ξ < 0, u < v < 0, the other cases being similar. Indeed,

M(v, u, v) =u− ξ − λA(u, u, v) + λA(ξ, u, v) + λ

∫ u

ξ
a(ζ)χ(ζ, u)dζ

=u− ξ − λA(u, v) + λ

∫ +∞

u
a(ζ)χ(ζ, u)dζ + λA(ξ, u, v)

≥1
2
(u− ξ)− λ

2

[
A(u)−A(ξ)

]

− λA(ξ) + λ

∫ +∞

u
a(ζ)χ(ζ, u)dζ

=
1
2
(u− ξ)− λ

2

[
A(u)−A(ξ)

]
+ λ

[
A(u)−A(ξ)

]

=
1
2
(u− ξ) +

λ

2

[
A(u)−A(ξ)

]
≥ 0 .

The proof of the kinetic formulation is therefore complete.
The proof of the local entropy inequalities is immediate, again after integrating (1.23) against

S′(ξ) dξ.
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Remark 3.4. It should be noted that in the proof of the previous theorem the CFL condition
(1.13) was used in its local form (only specific vn

i appear)

λQi+1/2 = λQ(vn
i , vn

i+1) ≤ 1.

Indeed, tracing back in the proof we see that v, u and v represent the values vn
i−1, v

n
i and vn

i+1.

Remark 3.5. Note that in the semidiscrete case the construction of the Discrete Kinetic Flux
is local and therefore the choice of uniform mesh is done only for notational simplicity. In the
fully discrete case more care is needed in the construction of the Discrete Kinetic Flux when
nonuniform mesh is considered essentially since a(ξ, u, v) depends on λ. Indeed, denoting by λ′

the CFL number corresponding to the next interval in the construction of the previous theorem,
a modification on the choice of Bv>u(ξ), Bu>v(ξ) is needed depending of the sign of 1 − λ′/λ :
e.g., one may choose

Bv>u(ξ) =

{
min{Av>u(ξ), A(ξ)} for u ≤ ξ ≤ v provided λ ≥ λ′

max{Av>u(ξ), A(u, v)} for u ≤ ξ ≤ v provided λ′ ≥ λ.
(3.22)

4 Engquist-Osher scheme

4.1 Semidiscrete Engquist-Osher scheme

We give first a direct proof for the kinetic formulation of the Engquist-Osher scheme [7]. We
also give explicit formulas for the kinetic defect measures m±.

Theorem 4.1. There is a unique nonnegative function mi(t, ξ) with bounded support in ξ such
that the scheme (1.4) with Engquist-Osher flux (1.21) is equivalent to the kinetic equation (1.17)–
(1.18), with a±(ξ, u, v) = a±(ξ). Moreover, we have the bound

∑

i∈Z
h

∫ ∞

0
mi(t, ξ) dt ≤ 1I{ξ≥0}‖(v0

i − ξ)+‖l1 + 1I{ξ≤0}‖(ξ − v0)+‖l1 ≤ ‖v0‖l1 ,

and the function m± are given by

m+(ξ; u, v) = A−(u)−A−(ξ), for u ≤ ξ ≤ v,

m+(ξ;u, v) = A−(v)−A−(ξ), for v ≤ ξ ≤ u,

m−(ξ; u, v) = A+(ξ)−A+(u), for u ≤ ξ ≤ v,

m−(ξ;u, v) = A+(ξ)−A+(v), for v ≤ ξ ≤ u. (4.1)

In other words, the Engquist-Osher scheme is nothing but a linear upwind discretization of
the kinetic formulation. Also Theorem 2.1 (ii) implies that the EO scheme satisfies all local
entropy inequalities.
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Proof. As in Lemma 2.1 we see that

mi(t, ξ) = [m+(ξ; vi(t), vi+1(t)) + m−(ξ; vi−1(t), vi(t))]

where the functions m+ satisfy

∂

∂ξ
m+(ξ; vi(t), vi+1(t)) =

δ(ξ − vi(t)) [A(vi(t))−Ai+1/2] + [a+(ξ)χ
(
ξ, vi(t)

)
− a−(ξ)χ

(
ξ, vi+1(t)

)
]− a(ξ)χ

(
ξ, vi(t)

)

and
∂

∂ξ
m−(ξ; vi−1(t), vi(t)) =

δ(ξ − vi(t)) [−Ai−1/2 −A(vi(t))]− [a+(ξ)χ
(
ξ, vi−1(t)

)
− a−(ξ)χ

(
ξ, vi(t)

)
] + a(ξ)χ

(
ξ, vi(t)

)
.

Then, with a slight change of notation,

∂

∂ξ
m+(ξ; u, v) =

= −δ(ξ − u)
∫

R
a−(ζ) [χ(ζ; u)− χ(ζ; v)] dζ + a−(ξ) [χ(ξ;u)− χ(ξ; v)].

Notice that the integral in ξ of the righthand side of this idendity vanishes. Therefore since m+

should have compact support in ξ,

m+(ξ;u, v) = 0 for ξ /∈ [u, v] (non− ordered interval).

Indeed, the brackets [χ(ζ;u)− χ(ζ; v)] and [χ(ξ; u)− χ(ξ; v)] are supported in [u, v]. Also, they
have the same sign as u − v. Therefore, either v < u and ∂

∂ξm+(ξ; u, v) is positive beetween v
and u and thus m+(ξ; u, v) vanishes for ξ ∈]−∞, v], is nonnegative for ξ ∈ [v, u] and has a jump
at ξ = u, vanishes for ξ > u. Either v > u, and a similar argument shows that m+(ξ; u, v) is
again nonnegative. The same argument as before shows that m−(ξ;u, v) is nonnegative also.

Finally, the bound on the discrete kinetic defect measure is obtained as in the continous case.
We first argue for ξ0 ≥ 0. We use Kruzkov’s entropy S+

ξ0
(ξ) = (ξ − ξ0)+, S+′′(ξ)ξ0 = δ(ξ = ξ0),

and multiply the equation (1.17) by S+′
ξ0

(ξ), integrate in ξ, in time and sum up on i. Taking into
account the sign in the quantity

∫

R
S+′

ξ0
(ξ) χ(ξ; vi(t)) dξ ≥ 0,

we obtain the inequality, for ξ0 ≥ 0,

∑

i∈Z
h

∫ ∞

0
mi(t, ξ0) dt ≤

∑

i∈Z
h ‖(v0

i − ξ)+‖l1

≤ ‖v0‖l1 .

A similar argument for ξ0 ≤ 0 concludes the proof of the proposition.
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4.2 Fully discrete Engquist-Osher scheme

As in Section 3, we depart from the fully discrete Engquist-Osher scheme (1.5), and define
fn+1

i (ξ) by the formula

fn+1
i (ξ)− χ(ξ, vn

i ) + λ
[
a+(ξ)χ(ξ, vn

i )− a−(ξ)χ(ξ, vn
i+1)

]

− λ
[
a+(ξ)χ(ξ, vn

i−1)− a−(ξ)χ(ξ, vn
i )

]
= 0.

(4.2)

which can also be written under the kinetic form

χ(ξ, un+1
i )− χ(ξ, vn

i ) + λ
[
a+(ξ)χ(ξ, vn

i )− a−(ξ)χ(ξ, vn
i+1)

]

− λ
[
a+(ξ)χ(ξ, vn

i−1)− a−(ξ)χ(ξ, vn
i )

]
=

∂

∂ξ
mn

i (ξ),
(4.3)

where mn
i (ξ) vanishes at ±∞ because

un+1
i =

∫

R
fn+1

i (ξ) dξ. (4.4)

We claim that for λ small enough this is a kinetic formulation.

Theorem 4.2. Consider the scheme (1.5), (1.21), and assume the CFL condition

λmax
ξ
|a(ξ)| ≤ 1, (4.5)

then (4.3) holds with mn
i (ξ) ≥ 0 satisfying (1.18), and thus it is a kinetic formulation of Engquist-

Osher scheme.

Proof. Using (4.4), and a variant of Brenier’s lemma ([4] or [16] Ch. 2.2), the property

0 ≤ sgn(ξ) fn+1
i (ξ) ≤ 1, (4.6)

is enough to ensure that mn
i (ξ) ≥ 0, using the relation

∂

∂ξ
mn

i (ξ) = χ(ξ, un+1
i )− fn+1

i (ξ).

To check the signs in (4.6), we rewrite (4.2) as

fn+1
i (ξ) =χ(ξ, vn

i )
(
1− λa+(ξ)− λa−(ξ)

)

+ λχ(ξ, vn
i+1)a−(ξ) + λχ(ξ, vn

i+1)a+(ξ).
(4.7)

To prove the property (4.6), it is enough to notice that this is a convex combination of χ’s, a
property which follows obviously from a± ≥ 0 and (4.5).
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[8] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, In Handboook of numerical analysis,
vol. VII, P.G. Ciarlet and J-L. Lions eds., North-Holland, Amsterdam, 2000.

[9] E. Godlewski, P.A. Raviart Hyperbolic systems of conservation laws, Ellipses, 1991.
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