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1 Introduction

We consider the one-dimensional system of shallow water equations (or Saint-
Venant system) with a source term

hi + (hu)y =0, (1a)
(hu)e + (hu® + Sh?), = ~ghZ, (1b)

which describes the flow at time ¢t > 0 at point « € R, where h(x,t) > 0 is
the height of water, u(zx,t) is the velocity, Z(x) is the bottom height and g
the gravity constant. In the sequel will denote ) = hu the discharge. System
(1) belongs in the more general class of hyperbolic systems with source terms

where u is a vector valued function and f,q are the given flux and source
functions. In this paper we propose relaxation models and corresponding time
discrete and finite element schemes for approximating (1). Our schemes can
be formulated for the more general system (2) and special attention is given
in the steady state approximations and their relation to the exact steady
states especially for (1).

The system (1) was originally derived by A. de Saint—Venant [20], while
recently Gerbeau and Perthame [8] derived a more complete system starting
from the Navier—Stokes equations. The above system is quite simple in the
sense that only the topography of the bottom in taken into account. Other
terms could be also added in order to include effects such as friction on the
bottom and on the surface as well as variations of the channel width. The
Saint—Venant equations are a hyperbolic system with a source term, due to
the topography of the bottom, which includes the unknown quantity h. In
the homogeneous case the system is equivalent to that of isentropic Euler
system. However due to the presence of the source term the properties of the
system change substantially.

In recent years many methods were proposed for the numerical approxi-
mation of solutions of hyperbolic conservations laws with source terms. The
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main difficulty being here, obtaining a scheme that is able to resolve shocks
accurately and at the same time to have a reasonable steady state behav-
ior. This is not a trivial matter since straight forward adaptations of upwind
schemes have bad steady state performance. Hence particular attention has
to be given in the numerical treatment of the source terms. In this direction
finite volumes are widely used, and in particular the well balanced schemes
introduced by Greenberg and LeRoux, [9], Gosse and LeRoux [12] and further
developed by Gosse [10],[11]. Another approach is based on wave propaga-
tion algorithms, [18], [3] and Godunov type schemes [7],[18]. Recently Jin
[16] introduced a new method based on averaging the values at the inter-
faces. An alternative class of schemes were considered in [2]. These schemes
are based on the kinetic interpretation of the system. An entropy satisfying
kinetic scheme which also accurately computes the steady states is presented
in [19].

In the sequel we consider relaxation models and finite element relaxation
schemes for (2), (1). We discuss first certain relaxation models and their time
discrete counterparts. These models include the standard relaxation approx-
imation for problems of balance laws considered e.g. in [4] as well as new
relaxation approximations that we believe that are better suited to designing
schemes for problems with non zero source terms. In addition we propose
new relaxation approximations for the shallow water equations that admit as
solutions exactly the steady states of the original system (1). We then apply
the ideas of [1] discretizing by finite elements these models. Standard finite
element spaces are used for the spatial discretization while implicit-explicit
Runge—Kutta methods provide the time stepping mechanisms. A special vari-
ant of the resulting schemes which satisfies a discrete version of the steady
state equation for (1) is also proposed.

The resulting schemes

— are based on a regularization mechanism with finite speed of propagation
(no extra diffusion is added in the discretization of the relaxation model)

— do not need the solution of approximate local Riemann problems

— are formulated as low order, or high order schemes, simply by selecting the
discretization space appropriately

— can be extended in multi-dimensions in a straightforward manner by using
the finite element framework.

Since this method has no other regularizing mechanism besides that of the
relaxation it should be combined with adaptive mesh refinement (close to the
shocks) as in [1].

This paper is organized as follows: The needed preliminary material, the
relaxation models and the properties of their time discrete counterparts are
introduced in Section 2. In Section 3 we present the finite element semi-
discrete and fully discrete schemes. Finally in Section 4 a series of experiments
displaying the features of the method are presented.
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2 Relaxation Models

For simplicity we consider first the scalar 1-D conservation law. The extension
to the case of systems, if is done according to [17] is straightforward. Special
relaxation models for the shallow water system (1) will be discussed in the
sequel. We depart from (2) with ¢ = 0,

u+ f(u)e, =0, z€eR, t>0, 3)
u(z,0) = uo(z), =z €R.

Then the relaxation system proposed in [17] is

U + v, =0,

(4)

1
vty = ——(v = f(u)).
This system can be viewed as a regularization of (3) by the wave operator

g + f(w)e = —€(uss — tgs). (5)

It is well known that if the subcharacteristic condition : |f'(u)| < ¢ holds then
a rigorous convergence analysis can be applied yielding at the relaxation limit
€ — 0 the conservation law (3).

In the case of a conservation law with a source term

u + f(u)e = q(u), z€R, >0,
u(gj,O) = UO(I)a z €R,

a relaxation system considered e.g. in [4] takes the form
w + vy = q(u),
vt Py =~ (0 (W)
yielding the following regularization of (3),

u + f(u)e = q(u) + eq(u) — €(uy — Ciag). (8)

Hence (7) introduces a wave type regularization of (6) and the additional term
eq(u)¢. We do not expect that (7) will preserve the general steady states of
(6) unless they (or ¢) have a special structure that, allows that as we will
see in the sequel for the shallow water system. Nevertheless the error terms
in the steady state regime are O(e), and since computations with relaxation
schemes are done with very small € (or even with € = 0 in the relaxed case)
(7) will yield a reasonable model for computations in this regime. Another
important feature of the relaxation model (4) in the homogeneous case is the
implicit-explicit time discretization: Consider time discrete approximations
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o (™), VT =2 V(") where t" = nd, § being the temporal stepsize. It is
known that the stiff source term in (4) should be descritized implicitly,

Un+1 _ Un
)
VnJrl _ Vn
)

+ V=0,
) (9)
+ UL = —— (V- UY),
€

Obviously the system (9) can be decoupled, and since U™*! is known from
the first equation, the solution of a nonlinear system is not needed. However
for (7) this is not the case. Indeed, discretizing the source terms implicitly
we get
Un+1 —_yn
)

Vn+1 —_yn

é

which is fully coupled.
As an alternative approach we consider the following relaxation system

F VI = g(Un,
) (10)
+UP = (V" f(UmH),

U + v, =0,

11
vt+c2ux:—%(v—f(u))—%R(u), ()

where R(u) is an antiderivative of g(u),

R(u(z,t)) = /fﬂ q(u(s,t))ds.

In this case (11) provides exactly a wave-type regularization of (6), indeed
we have
e+ f(w)e = q(u) — e(uy — Cugy). (12)

An implicit-explicit time discretization is now possible when we treat the
source terms implicitly:

Un+1 _pyn
6
Vn+1 —_yn
6

This idea is applied successfully in the sequel in the case of shallow water
system, yielding efficient schemes with nice steady-state behavior.

+Vr =0,
) ) (13)
+ C2U;L _ _E(Vn-H _ f(Un-i-l)) _ ER(UTL-H).

2.1 Relaxation models for the shallow water system

Next we discuss the properties of certain relaxation models for for the Saint-
Venant equations corresponding to (7) and (11) respectively. In addition we
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introduce a relaxation system that preserves the steady states of (1). The
steady state solution of (1) satisfies

(hw)e =0 (hu? + Sh?), = —ghZ’, (14)

ie.,
@) = hu = constant,
u? (15)
5 + g(h+ Z) = constant.

A particular case that provides a benchmark for many approximating schemes
is the flow at rest, i.e., when u = 0, and h + Z = constant.

The relaxation models for (1) corresponding to (7) and (11) respectively
are

hi + vy =0, (16a)
Q¢ +w, = —ghZ’, (16b)
1
v+ Chy = ——(v - Q), (16¢)
€
1 Qg
2 2
= S(w— (= +2 1
wet Q= —(w— (L4 I, (164)
and
ht +v, =0, (17a)
Qi +w, =0, (17b)
1
vt—i—c%hz = —E(U—Q)7 (17¢)
1 2 1
v dQ = (T I+ Rz, a)
€ h 2 €
where

R(zi)(e.0) = | " gh(y.t)Z' (y)dy

The constants ¢y, co should be chosen appropriately, so that certain sub-
characteristic conditions hold true. Formally in the relaxation limit ¢ — 0
we recover (1), for both relaxation systems (16) and (17). Notice that in the
case where Z = 0 then the two systems are identical. The above systems
are combined in the sequel with implicit-explicit finite element discretiza-
tions yielding a reliable class of schemes for the approximation of (1). Note
that due to the special form of the source term in the shallow water system,
cf. (16a), even the first system, (16), admits decoupled implicit-explicit dis-
cretizations. Although the resulting schemes perform in a nice way in all the
test problems, the exact steady states of (1) are not obtained as solutions of
(16) and (17) with the exception of the flow at rest with Z” = 0. Overall the
qualitative behavior of (17) is better, cf. Section 4.
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3 Finite Element Schemes

3.1 Semidiscrete schemes

We consider now the finite element discretizations of (16), and (17). We
assume for simplicity that the data our problem and its solution in [0, T] has
compact support in a set {2y C R. Let {2 be an appropriate set such that
£2; C 2 where our numerical solution will be sought. We consider a classical
one dimensional C? finite element space defined on an element decomposition
7, of (2

S. =8 ={p € CR): d|r € P1(T),T € T, $| oc =0}.

The schemes are extended in a straightforward manner using finite element
spaces of arbitrary degree p:

S, =8 ={peCR):¢g|lr € P,(T), T € Ty, p|2c =0}.

We denote by T' the elements, intervals in the one dimensional case, of
the partition 7, and k7 the length of the interval T'. Then the finite element
discretization of (16) is : we seek functions hy, Qx, Uk, W € Sk so that :

(athm ¢) + (azvn7¢) = 07 VQS S Sm (183)
(01Qr, V) + (Opwi, V) = —(ghuZ' ), Vip € S, (18b)
(010 8) + A D, 8) = — (v~ Qu,0), V6 € S, (180

(O, ) + A0 Qs V) =~ (wi — Flhi, @), ), V0 €S, (180)

where
2 9,2
F(h = — + Zh*.
(hQ ==+

Similarly for (17) we have

(Oth, ) + (0xv, ) =0, Yo € Sy, (19a)
(01Qus ¥) + (Opw, ) =0, VY € S, (19b)
(00 0) + A Ouh, ) = (0~ Qud), VOES, (190
(Orto ) + (0. Q) = == (e — Fll, Qu), ) (194)

FHR(Zih)0), V€S,

These schemes are high order and are combined with corresponding implicit-
explicit Runge-Kutta time discretizations in Section 3. The behavior of the
resulting schemes in several test problems is presented in Section 4.
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3.2 Fully discrete schemes

Next we consider fully discrete schemes for (18), and (19). There are many
alternatives for the time discretization of these semidiscrete schemes. In our
case we use Runge-Kutta methods. For simplicity we present fully discrete
schemes for (19) only. The fully discrete versions of (18) is done in a similar
fashion.

We discretize the system (19) in time using Runge-Kutta methods. We
treat the stiff nonlinear term implicitly while the linear part is treated explic-
itly, so the resulting scheme will be linear. In order to decouple the system we
proceed by discretizing (19a) and (19b) using an Fzplicit RK (ERK) method
while for (19¢) and (19d) we use a Diagonally Implicit RK (DIRK) method.

Let d be the temporal stepsize and let t"*! = ¢t"+§. Assuming that the ap-
proximations at t", (b, Q™,v", w™) are known then (A7 +1, QnHl pntl oyntl)
are defined by

<hz+1,¢>>=<hz,¢>+6§jbi{—<amv:’t )} (20n)
@ v) = (@, ¥) +6Zb{ (Ouw), )} (20b)
(o, 6) = (o +62b{ 0.",0) ~ ZO1 - QRN (200
<wz+l,w>=<w:,w>+5;éi{—c i 1) (20d)

~ = P Q.0 + LR, ) ),

where the intermediate stages (h™¢, Q™% v™% w™") are given by the following
coupled system of s—equations :
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(12,6) = (2,6) + 53 asy {~(@:27,6)} (21a)
i—1

Q%) = (@) + 8 ai {=(@w/ )} (21b)
j=1

(U:ﬂ.a ) = (v27¢) + 62 azij {_Cf(@gh:'j’ ¢) - %(’U:J - Q;LJ’ (b)} ’ (21C)
j=1

(wp, ) = (wi, ) + 52@{63@6@% ) (21d)
j=1

-l = PO QU). )+ L(RZ )0

and the set of constants A = (ai;), b = (b1,...,bs), A = (@ij), b =
(l~71, .. .,ZN)S), 1,7 = 1,...,s define the s—stage (ERK) and (DIRK) methods
respectively.

In our experiments we use the following (ERK) method proposed in [21]
and the corresponding (DIRK) method, which are of 2nd order,

00, 12 < 0 0 s 1/2
A=10 "= AT ipue Tk
The intermediate stages (A%, Q™ v™" w™") i = 1,...,s are evaluated at

the same time levels 7 =7 = (0,1), and 7 = 7 = (0, 1, 1/2) respectively. The
evaluation of the intermediate stages requires the solution of (21) which, since
it can be decoupled, is a fully explicit scheme which requires the inversion of
the mass matrix.

3.3 Regularization and mesh refinement

It is well known that direct finite element discretizations of hyperbolic con-
servation and balance laws produce solutions with oscillatory character due
to the artificial dispersion introduced by the finite element (or central) dis-
cretization. The classical way to have finite element schemes with reasonable
behavior close to the shocks is to add directly artificial diffusion. In our case,
among other issues related to efficient implementation, relaxation models
include a regularization of the original equation by a wave operator. In par-
ticular the model (11) corresponds to exactly a wave-type regularization of
(6)

u + f(u)e = q(u) — e(uy — ugy). (22)

The qualitative features of our finite element schemes as well as their relation
to the classical finite difference schemes of [17] were discussed in detail in
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[1]. We briefly recall here the main remarks. In particular, a finite element
discretization of the relaxation model, i.e. the scalar version of (19), has
effective equation in the piecewise linear case

/62

— [ (Waza- (23)

up + f(u)e = q(u) — e(uy — Cgy) — G

Applying Chapman-Enskog expansion we conclude to,

I€2

We conclude therefore that if the dispersion term is dominant the approx-
imate solution will have oscillatory character close to the shocks. Hence in
order to exclude this possibility for our scheme the diffusion term in the last
equation should be dominant. As it was observed in [1] a condition of the
form

K < e

should be respected in a neighborhood of the shock, where v is a constant.
Hence, if the the local mesh size x close to the shock is small enough the
schemes are free of oscillations, cf. [1] for details.

In order to locate the shock and to use finer mesh there we use the esti-
mator function g introduced in [1]. This is a piecewise linear function with
point values

Kjlu(a; 1) — w(aj—1,t™)|

where k; = x; — ;-1 and has the property to locate accurately the (approxi-
mate) shocks. Its construction was motivated by the a posteriori estimates of
[13, 14]. This function is used in the mesh refinement shock computations in
the next section. We note though that the proposed schemes are not neces-
sarily linked to a particular method of the mesh selection. This can be done
in many alternative ways. The only requirement of our method is to have fine
enough mesh size close to the shocks. (Note that in practice v ranges from
102 — 10%).

4 Numerical experiments

We present the results of a series of numerical experiments illustrating the
various features of the schemes. We have tested the fully discrete analogs, cf.
Section 3.2, of the methods (18), (19) in the piecewise linear case. We still
refer these methods as (18), (19). Overall the qualitative behavior of (19) is
better than of (18). So we display results of (18) only in the first example—
the flow at rest. A general observation is that, although our schemes do not
satisfy exactly the steady state equation (15) but rather approximations of it,
the results in the standard steady state benchmarks presented in the sequel
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are very promising. Issues related to fine h — p adaptive computations as
well as computations in more than one dimension will be the subject of a
forthcoming work.

In all the experiments reported here the time step d is computed according

to the CFL-condition )

5.

The adaptive strategy followed in these experiments is very similar to the
one reported in [1] : while the number of nodes is kept fixed throughout the
computation, their locations are changing accordingly.

max{cy, CQ}E <

4.1 Flow at rest
We consider the system (1) with initial conditions

u(z,0) =0 VzeR,
h(z,0)+ Z(z) = H VzeR,

then clearly

u(z,t)=0 VreRt>0,
hz,t)+ Z(x)=H VxeRt>0,

is a solution to (1).
We test our scheme to this steady state flow where the bathymetry is
non-trivial and is given by

. - . - 2 < <
Z(x):{ 0.2 - 0.05(z — 10)2, 8 <z <12, (24

0, otherwise,
in channel of length L =20m and H =2m, e =5.F —4, ¢ = cy = 5.
Figures 1, and 2 show a magnified view of the results obtained by these
schemes. The variance of the values of the water level H = 2m, are of O(e).

The differences are become more clear in the comparison of discharge in figure
2. There clearly (19) is better than (18), (Q = 0).

4.2 Dam break flow

Next we consider a non-stationary case, the dam break problem in a rectan-
gular channel with flat bottom, Z = 0 and initial conditions:

u(z,0) =0,

hi =<0,
h(x,O):{ h(l) x>0
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Fig. 1. Magnified view. Water level: (18)(thicker solid line), (19)(fine solid line)
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Fig. 2. Magnified view. Discharge: (18)(fine solid line),(19)(thicker solid line)

with h; > hg. This is the corresponding Riemann problem for the homo-
geneous problem (1). We computed the solution on a channel of length
L = 2000m for T' = 200s with k = 20m,e = 5.F — 4,¢; = ¢ = 45. In
Figures 3, 4 we present the results of the water level and velocity respectively
for hy = 1, hg = 0.5. The solid line represents the exact solution computed
using the classical theory, [6], [22].
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Fig. 3. With refinement, Water level.

Fig. 4. With refinement, Velocity.
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