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Abstract. We consider semidiscrete and fully discrete finite volume relaxation schemes for multidi-
mensional scalar conservation laws. These schemes are constructed by appropriate discretization of a
relaxation system and it is shown to converge to the entropy solution of the conservation law with a
rate of h1/4 in L∞([0, T ], L1

loc(Rd)) .

1. Introduction

In this paper we consider a class of finite volume schemes approximating the scalar multidimen-
sional conservation law, whose construction is motivated by discretizing the relaxation system

∂tw
ε + divAwε =

1
ε

d∑

i=1

Gi(wε, zε
i ), x ∈ Rd,(1.1)

∂tz
ε
i + divBiz

ε
i =

1
ε
Gi(wε, zε

i ), i = 1, . . . , d, x ∈ Rd,(1.2)

in variables (w,Z) with Z = (z1, . . . , zd). The constant vectors A,Bi, i = 1, . . . , d and the smooth
functions Gi : R×R→ R satisfy certain structural assumptions, cf. Section 2. The system (1.1-2)
is considered with initial data wε(x, 0) = wε

0(x), Zε(x, 0) = Zε
0(x), x ∈ Rd. Contractive relaxation

systems of the form (1.1-2) were introduced and analyzed in Katsoulakis and Tzavaras [KT1], and
it was shown under certain assumptions that as ε → 0 their solution is associated to the unique
entropy solution of the conservation law,

(1.3) ∂tu + divF (u) = 0, x ∈ Rd, t > 0, u(x, 0) = u0(x) ∈ L1(Rd) ∩ L∞(Rd) .

Here, for a given conservation law (1.3), we appropriately select A, Bi, i = 1, . . . , d and the
functions Gi, and we discretize (1.1-2) by semidisctere and fully discrete finite volume schemes.
The approximations emanating from these schemes are shown to converge to the entropy solution
of (1.3) with a rate of h1/4 in L∞([0, T ], L1

loc(Rd)) .

2. Preliminaries – Relaxation schemes

We assume that for a given conservation law (1.3) we select the vectors A,Bi, i = 1, . . . , d, and
the functions Gi such that,

(A.1)
Gi(·, zi) is strictly decreasing in w for fixed zi,

Gi(w, ·) is strictly decreasing in zi for fixed w,
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and that there exist functions hi : R→ R,

(A.2)
hi strictly decreasing, hi(0) = 0, lim

w→±∞
hi(w) = ∓∞,

Gi(w, hi(w)) = 0, Gi(0, 0) = 0, w ∈ R.

Given Ra,b = [a, b]×∏d
i=1[hi(b), hi(a)], there exists a σ = σ(a, b) > 0 such that

(A.3) |Gi(w, zi)| ≥ σ|hi(w)− zi| for (w, Z) ∈ Ra,b,

and finally, if F is the flux of the conservation law (1.3), hi should satisfy

(A.4)

F (η) = A(v)−
d∑

i=1

Bi(hi(v)),

if η = v −
d∑

i=1

hi(v), v ∈ R.

Note that as a consequence of (A.1-3) there hold

(A.3′)
(hi(w)− zi)Gi(w, zi) > 0,

|Gi(w, zi)| ≤ σ′|hi(w)− zi| for (w, Z) ∈ Ra,b, where σ′ = σ′(a, b) > 0.

Lemma 4.1 of [KT1] shows that it is indeed possible to construct such functions, e.g. when
A = (ω1V1, . . . , ωdVd), Vi > 0, ωi > 0 Bi = (0, . . . ,−Vi, . . . , 0), and Gi(w, zi) = hi(w) − zi, and
Vi, ωi are chosen to satisfy certain sub-characteristic conditions, cf., [KT1], [CLL] and [JX]. In this
case and for d = 1 the relaxation system (1.1) is equivalent to the one proposed by Jin and Xin
[JX] and analyzed by Natalini [N1]. The convergence properties of (1.1) for d ≥ 1 were investigated
in [KT1]. In [N2] an alternative relaxation system was proposed and analyzed.

Assumptions (A.2) and (A.4) provide a (formal) reasoning on the relationship of (1.1-2) and
(1.3). Indeed (1.1-2) imply that

(2.1) ∂t(wε −
d∑

i=1

zε
i ) + div

(
Awε −

d∑

i=1

Biz
ε
i

)
= 0 .

As ε → 0 we expect that the local equilibrium, zi = hi(w), i = 1, . . . , d, will be enforced and
therefore, in view of (A.4), the limiting dynamics of the relaxation system will be described by the
weak solutions of (1.3), cf. [KT1]. For small ε, wε −∑d

i=1 zε
i will provide an approximation to the

solution u of (1.3). Based on this observation one can construct approximating schemes to (1.3) by
discretizing the relaxation system. The corresponding schemes are then called relaxation schemes.

Finite difference relaxation schemes were presented in a systematic way by Jin and Xin [JX].
Finite difference relaxation schemes based on the system (1.1) were proposed and analyzed in
[KKM]. It was shown that these schemes converge to the entropy solution of the multidimensional
conservation law with a rate of h1/2 in L∞([0, T ], L1(Rd)). Error estimates of difference schemes to
relaxation models arising in chromatography were proved in [ScTW], [ShTW]. The convergence of
finite volume schemes approximating the entropy solution of (1.3) was analyzed, e.g., in [CCL1,2],
[KR], [V]. In a recent paper Rohde [R], using an appropriate extension of DiPerna’s theory, has
proved convergence of finite volume schemes to weakly coupled hyperbolic systems.
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Space discretization. Let Th be a decomposition of Rd into non-overlapping, nonempty and open
polyhedra such that

⋃
K∈Th

K̄ = Rd. The set of faces of K is denoted by ∂K and, on each face e

on K, νe,K ∈ Rd represents the outward unit normal to the face e. Γh will denote the set of all
faces of the decomposition Th. Given a face e of K, Ke denotes the unique polyhedron that shares
the face e with K. The volume of K is denoted by |K| and the (d − 1)-measure of e by |e|. Let
hK be the diameter of the polyhedron K and let h = supK∈Th

hK < 1. We shall assume that our
decomposition is regular, i.e., if ρK is the diameter of the largest ball B, B ⊂ K,

hK ≤ γρK , K ∈ Th,

with a constant γ independent of h. In particular this implies that if e is a face of K, then |e| and
hK are comparable. We define the finite volume scheme approximating (1.1), (1.2) as follows: We
seek a piecewise constant function (wh, Zh), wh|K = wK , Zh = (z1,h, . . . , zd,h), zi,h|K = zi,K , such
that

(2.2)

∂twK +
∑

e∈∂K

|e|
|K|g

K(wK , wKe) =
1
ε

d∑

i=1

Gi(wK , zi,K),

∂tzi,K +
∑

e∈∂K

|e|
|K|g

K
i (zi,K , zi,Ke) =

1
ε
Gi(wK , zi,K), i = 1, . . . , d, K ∈ Th,

where g, gi : R × R → R, i = 1, . . . , d are discrete monotone fluxes. For initial approximations
we take wK(0) = 1

|K|
∫

K
w0dx, and zi,K(0) = 1

|K|
∫

K
z0
i dx. Although gK , gK

i correspond to linear
fluxes, it is convenient in the analysis to list their properties as in the general (nonlinear) case. We
explicitly use, when it is needed, the linearity, cf. (2.6).

The discrete fluxes are assumed to satisfy:

gK(u, v) = −gKe(v, u) , gK
i (u, v) = −gKe

i (v, u) Conservation Property,(2.3)

gK(u, u) = A(u) · νe,K , gK
i (u, u) = Bi(u) · νe,K Consistency Property,(2.4)

∂gK

∂u
,
∂gK

i

∂u
≥ 0 ,

∂gK

∂v
,
∂gK

i

∂v
≤ 0 Monotonicity Property,(2.5)

gK(u, v), gK
i (u, v) are linear functions of u, v.(2.6)

Time discretization. Let δ be the time step and tn = nδ. Then we shall consider semi-explicit
fully discrete schemes: We seek a piecewise constant function (wh,δ, Zh,δ), wh,δ|K×[tn,tn+1) = wn

K ,
Zh,δ = (z1,h,δ, . . . , zd,h,δ), zi,h,δ|K×[tn,tn+1) = zn

i,K , such that,

(2.7)

wn+1
K = wn

K − δ

|K|
∑

e∈∂K

|e|gK(wn
K , wn

Ke
) +

δ

ε

d∑

i=1

Gi(wn+1
K , zn+1

i,K ),

zn+1
i,K = zn

i,K − δ

|K|
∑

e∈∂K

|e|gK
i (zn

i,K , zn
i,Ke

) +
δ

ε
Gi(wn+1

K , zn+1
i,K ), i = 1, . . . , d,

with initial approximations w0
K = 1

|K|
∫

K
w0(x) dx, and z0

i,K = 1
|K|

∫
K

zi0(x) dx, i = 1, . . . , d.

The stability and convergence properties of these schemes are investigated in the next sections.
For the semidiscrete case we prove that under standard assumptions on the initial data, for any
R > 0, T > 0, there is a constant C = C(R, T ) such that

‖u(·, t)− Uh(·, t)‖L1(B(0,R)) ≤ Ch1/4 , t ≤ T,
3



where Uh = wh −
∑d

i=1 hi(wh), cf. Theorem 4.1. Here B(0, R) is the ball with center 0 and
radius R. In the case of fully discrete approximations a similar estimate holds true, provided that
appropriate CFL conditions are valid, cf. Theorem 6.1; cf. also Remark 5.1.

A main advantage of relaxation schemes, is the simplicity of their construction coming from the
fact that the principal part of (1.1-2) is linear, and therefore there is no need to solve local Riemann
problems. Thus high order and adaptive schemes can be easily formulated. Issues related to the
numerical implementation and the performance of finite volume relaxation schemes are addressed
in [KZ].

Error estimates of order O(h1/4) for finite volume approximations to (1.3) were previously ob-
tained in [CCL1], [V], and for finite elements in [CG1]. For finite difference approximations the
order of convergence O(h1/2) was established, e.g. in [Kz], [S]. The main reason for the reduced
order of convergence in the finite volume case is the lack of BV bounds for the approximate schemes
in unstructured meshes. To compensate this, an estimate for the discrete gradients in L2 was proved
in [CCL1], [V], which led to the O(h1/4) estimate. In the case of relaxation schemes considered here
we are able to prove an analogous bound, cf. Lemma 3.3, Lemma 5.3. In addition for the relaxation
schemes, again due to the lack of BV bounds, an estimate for the distance from the equilibrium in
L2 turns out to be crucial, cf. Lemma 3.4, Lemma 5.4. (Note that the corresponding result is new
for the continuous relaxation model).

Our analysis is based on an approximation lemma for deriving error estimates for numerical
approximations to conservation law (1.3), cf. Lemma 4.1. This is a result obtained in [KKM] and
extends a result of Bouchut and Perthame [BP] to the case of numerical schemes. The use of this
Lemma in the (complicated) case of finite volume approximations considered in this paper, avoids
much of the technical work needed if one applies the original approach of doubling the variables,
[Kr], [Kz], as in [CCL1], [V]. Indeed, the analysis in [CCL1], [V] is considerable simplified if one
uses Lemma 4.1 along the lines of the analysis presented in Section 6. This is of some importance
because the difficulties of applying Kruzkov’s estimates to numerical schemes are highlighted. As
noted first in [CG2], the classical approach of Kuznetsov is an “a posteriori” approach. This can be
seen directly in the framework considered in this paper, simply by observing that the E−terms in
the bound (4.5) depend only on the approximate solution uh. Indeed, by applying a more refined
analysis, explicit a posteriori error bounds suitable for adaptive mesh refinement based on Lemma
4.1 are proposed in [GM] for finite difference and finite volume approximations to (1.3), cf. also
[CGa].

An alternative “a priori” approach for deriving error estimates, which does not rely on the
regularity properties of the schemes, was proposed and extensively analyzed in [CG2,3] for finite
difference and in [CGY] for finite volume schemes. To carry out the program proposed in [CG1]
one has to show an appropriate “discrete” stability for the scheme considered. A task considerable
more complicated than the “continuous” stability used in the proof of the Lemma 4.1. Cockburn,
Gremaud and Yang in [CGY] were able to prove h1/2 estimates by using this approach for a special
class of monotone finite volume schemes in symmetric (or nearly symmetric) non Cartesian meshes,
cf. [CGY, Sections 2.a, b] for explicit assumptions. The development of ideas in [CG2,3], [CGY] and
their application to relaxation schemes in unstructured meshes will be the subject of forthcoming
work.

The paper is organized as follows. In Sections 3 and 5 we prove the necessary stability properties
for the semidiscrete and fully discrete schemes respectively. We then use these properties in Sections
4 and 6 to prove convergence. In particular the relaxation schemes satisfy a basic comparison
principle (Lemma 3.1 and 5.1) which then implies the L1 contraction property (Lemma 3.2 and
5.2), the fact that Ra,b is a positively invariant region for the schemes and as consequence that
the approximations are uniformly bounded in L∞ (Lemma 3.2 and 5.2), and the discrete entropy
inequalities ((3.8) and Lemma 5.2). Using the invariance of Ra,b we are then able to show the
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weak dissipation estimates (Lemma 3.3 and 5.3) and the estimate for the distance from equilibrium
(Lemma 3.4 and 5.4) mentioned above. In the convergence proof of Section 4 we first use the
discrete entropy to prove the basic error inequality (4.15) which allows us to apply then Lemma
4.1. To estimate then the E-terms of (4.5) we use Lemmata 3.3 and 3.4. The proof in Section 6
follows similar plan.

Remark 2.1. One can prove similar convergence results for the fully-explicit scheme,

wn+1
K = wn

K − δ

|K|
∑

e∈∂K

|e|gK(wn
K , wn

Ke
) +

δ

ε

d∑

i=1

Gi(wn
K , zn

i,K),

zn+1
i,K = zn

i,K − δ

|K|
∑

e∈∂K

|e|gK
i (zn

i,K , zn
i,Ke

) +
δ

ε
Gi(wn

K , zn
i,K), i = 1, . . . , d.

In this case however we have to assume a CFL condition of the type δ ≤ Cε. Compare with [LV].

3. Stability estimates

We first prove a Comparison Principle which implies several useful properties of the scheme. We
start by introducing some notation. For a, b ∈ R we set a ∨ b = max{a, b} and a ∧ b = min{a, b}.
Further, for a given function f we denote by f+, f− the positive and negative parts of f , respectively
and χf>0 stands for the characteristic function of the set {(x, t) : f(x, t) > 0}, that is χf>0 = 1 if
f > 0 and zero if f ≤ 0.

Lemma 3.1. Assume that Gi(·, ·), i = 1, . . . , d, satisfy assumptions (A.1 − 3). Let (wh, Zh) and
(wh, Zh) be two solutions of (2.2) that vanish outside a ball BM of radius M . Then we have
(3.1)

∂t

{
(wK − w̄K)+ +

d∑

i=1

(zi,K − z̄i,K)−
}

+
∑

e∈∂K

|e|
|K|χwK−w̄K>0

{
gK(wK ∨ w̄K , wKe ∨ w̄Ke)− gK(wK ∧ w̄K , wKe ∧ w̄Ke)

}

+
d∑

i=1

∑

e∈∂K

|e|
|K|χzi,K−z̄i,K<0

{
gK

i (zi,K ∨ z̄i,K , zi,Ke ∨ z̄i,Ke)− gK
i (zi,K ∧ z̄i,K , zi,Ke ∧ z̄i,Ke)

}
≤ 0.

Proof. Let (wh, Zh) and (wh, Zh) be two solutions of (2.2), then we have

∂t(wK − w̄K) +
∑

e∈∂K

|e|
|K|

{
gK(wK , wKe)− gK(w̄K , w̄Ke)

}
=

1
ε

d∑

i=1

{
Gi(wK , zi,K)−Gi(w̄K , z̄i,K)

}

∂t(zi,K − z̄i,K) +
∑

e∈∂K

|e|
|K|

{
gK

i (zi,K , zi,Ke)− gK
i (z̄i,K , z̄i,Ke)

}
=

1
ε

{
Gi(wK , zi,K)−Gi(w̄K , z̄i,K)

}
.

Using the fact that f+ = χf>0f, f− = −χf<0f multiplying the first equation by χwK−w̄K>0, and
the second by −χzi,K−z̄i,K<0 summing over i and adding the resulting equations, we get by using
the monotonicity assumptions on Gi

(3.2)

∂t

{
(wK − w̄K)+Mhcr

d∑

i=1

(zi,K − z̄i,K)−
}

+
∑

e∈∂K

|e|
|K|χwK−w̄K>0

[
gK(wK , wKe)− gK(w̄K , w̄Ke)

]

−
d∑

i=1

∑

e∈∂K

|e|
|K|χzi,K−z̄i,K<0

[
gK

i (zi,K , zi,Ke)− gK
i (z̄i,K , z̄i,Ke)

]
≤ 0.
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Let Tw = −χwK−w̄K>0[gK(wK , wKe) − gK(w̄K , w̄Ke)], and Tz = χzi,K−z̄i,K<0[gK
i (zi,K , zi,Ke) −

gK
i (z̄i,K , z̄i,Ke)]. Then we have

(a) For wK − w̄K > 0, we have that wK = wK ∨ w̄K and w̄K = wK ∧ w̄K ; otherwise Tw = 0.
Then, using (2.5) we have

(3.3) Tw ≤ −χwK−w̄K>0{gK(wK ∨ w̄K , wKe ∨ w̄Ke)− gK(wK ∧ w̄K , wKe ∧ w̄Ke)}.

(b) Similarly, for zi,K − z̄i,K < 0 (otherwise Tz = 0) we have that zi,K = zi,K ∧ z̄i,K and
z̄i,K = zi,K ∨ z̄i,K . Now, (2.5) implies

(3.4) Tz ≤ −χzi,K−z̄i,K<0{gK
i (zi,K ∨ z̄i,K , zi,Ke ∨ z̄i,Ke)− gK

i (zi,K ∧ z̄i,K , zi,Ke ∧ z̄i,Ke)}.

Therefore, (3.2), (3.3) and (3.4) yield (3.1). ¤
Next, we show that the scheme is L1 contractive and bounded in L∞.

Lemma 3.2. Under the assumptions of Lemma 3.1 we have

(i)

‖wh(t)− wh(t)‖L1+
d∑

i=1

‖zi,h(t)− zi,h(x, t)‖L1

≤‖wh(τ)− wh(τ)‖L1 +
d∑

i=1

‖zi,h(τ)− zi,h(τ)‖L1 , 0 ≤ τ < t.

(ii) If, for some a < b, we have a ≤ wK(0) ≤ b, hi(b) ≤ zi,K(0) ≤ hi(a), i = 1, . . . , d,K ∈ Th, then

a ≤ wK(t) ≤ b, hi(b) ≤ zi,K(t) ≤ hi(a), K ∈ Th, i = 1, . . . , d,

i.e., the region Ra,b = [a, b]×∏d
i=1[hi(b), hi(a)] is positively invariant.

Proof. (i) Relation (3.1) implies

(3.5)

∂t

{
|wK − w̄K |+

d∑

i=1

|zi,K − z̄i,K |
}

+
∑

e∈∂K

|e|
|K|g

K(|wK − w̄K |, |wKe − w̄Ke |)

+
d∑

i=1

∑

e∈∂K

|e|
|K|g

K
i (|zi,K − z̄i,K |, |zi,Ke − z̄i,Ke |) ≤ 0.

Multiplying by |K| and then summing w.r. to K ∈ Th we get (i) by noticing that in each edge
of our partition, gK(|wK − w̄K |, |wKe − w̄Ke |) + gKe(|wKe − w̄Ke |, |wK − w̄K |) = 0, and a similar
relation for the zi,K terms.

For the proof of (ii), we first observe that

χwK−w̄K>0g
K(wK − w̄K , wKe − w̄Ke) ≥ gK((wK − w̄K)+, (wKe − w̄Ke)

+),

−χzi,K−z̄i,K<0g
K
i (zi,K − z̄i,K , zi,Ke − z̄i,Ke) ≥ −gK

i ( (zi,K − z̄i,K)−, (zi,Ke − z̄i,Ke)
−).

Indeed, by the monotonicity properties of gK , if χwK−w̄K>0 = 1,

χwK−w̄K>0g
K(wK − w̄K , wKe − w̄Ke) = gK((wK − w̄K)+, (wKe − w̄Ke))

≥ gK((wK − w̄K)+, (wKe − w̄Ke)
+),
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in the case where χwK−w̄K>0 = 0 it suffices to show gK(0, (wKe − w̄Ke)
+) ≤ 0. But this is a

consequence of (2.3), (2.4) and the fact that (wKe − w̄Ke)
+ ≥ 0. The corresponding relation for

zi,K is proved similarly.
Using now these relations, the fact that gK((wK−w̄K)+, (wKe−w̄Ke)

+)+gKe((wKe−w̄Ke)
+, (wK−

w̄K)+) = 0, and the corresponding relation for zi,K we obtain in view of (3.2),

∑

K∈Th

|K|
[
(wK(t)− w̄K(t))+ +

∑

i

(zi,K(t)− z̄i,K(t))−
]

≤
∑

K∈Th

|K|
[
(wK(0)− w̄K(0))+ +

∑

i

(zi,K(0)− z̄i,K(0))−
]
.(3.6)

Then, (ii) follows by noticing that w̄K = b, z̄i,K = hi(b) is a solution of the semidiscrete scheme,
since

∑
e∈∂K |e|gK(a, a) = 0 and

∑
e∈∂K |e|gK

i (hi(b), hi(b)) = 0 . ¤

Discrete entropy inequality. Lemma 3.1 implies a discrete entropy inequality. Indeed (3.1) is
still valid if we interchange + and −. For any ξ ∈ R, we let w̄K = ξ, z̄i,K = hi(ξ), i = 1, . . . , d, and
setting, for u, v ∈ R

(3.7)

DK
ξ (u, v) = gK(u ∨ ξ, v ∨ ξ)− gK(u ∧ ξ, v ∧ ξ) = gK(|u− ξ|, |v − ξ|) ,

Di,K
ξ (u, v) = gK

i (u ∨ hi(ξ), v ∨ hi(ξ))− gK
i (u ∧ hi(ξ), v ∧ hi(ξ))

= gK
i (|u− hi(ξ)|, |v − hi(ξ)|)

we get after summation using (3.1), the following Discrete Entropy Inequality

(3.8) ∂t

{
|wK − ξ|+

d∑

i=1

|zi,K − hi(ξ)|
}

+
∑

e∈∂K

|e|
|K|

{
DK

ξ (wK , wKe) +
d∑

i=1

Di,K
ξ (zi,K , zi,Ke)

}
≤ 0 .

Remark 3.1. Notice that for DK
ξ we have, for u ∈ R,

DK
ξ (u, u) = |u− ξ|A · νe,K and Di,K

ξ (u, u) = |u− hi(ξ)|Bi · νe,K .

Dissipation estimate. The next lemma provides an estimate for the distance from the equilib-
rium zi = hi(w) for our approximating scheme and a weak dissipation estimate for wK and zi,K .
A stronger estimate for the distance from the equilibrium is proved in Lemma 3.4 This result com-
pensates the lack of BV estimates for our schemes, compare with [CCL1], [V], in the proof of the
convergence result in Section 4. We need some more notation: Let h−1

i denote the inverse of hi,
and

Ψi(z) = −
∫ z

0

h−1
i (ξ) dξ ,

cf., [KT1]. The functions Ψi, i = 1, . . . , d, are positive and strictly convex according to our as-
sumptions on hi, cf. Section 2. In particular (A.2) implies that there exists µ = µ(a, b) > 0 such
that

(3.9) Ψ′′i (z) ≥ µ > 0 , z ∈ [hi(b), hi(a)].
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Our assumptions on the fluxes imply that

(3.10)
gK(u, v) =

A · νe,K

2
(u + v) + aνe,K

(u− v),

gK
i (u, v) =

Bi · νe,K

2
(u + v) + bi

νe,K
(u− v),

where ae := aνe,K
= aνe,Ke

≥ 0 and bi
e := bi

νe,K
= bi

νe,Ke
≥ 0. (2.5) implies 1

2 |A · νe,K | ≤ ae and
1
2 |Bi · νe,K | ≤ bi

e.

Remark 3.2. Most of the well known monotone fluxes are reduced to the linear case, e.g., for
gK(u, v) to

gK(u, v) =
A · νe,K

2
(u + v) +

|A · νe,K |
2

(u− v).

We have now

Lemma 3.3. Assume that the initial conditions satisfy (w0
h, Z0

h) ∈ Ra,b, for some a, b ∈ R. Then
if σ = σ(a, b) and µ = µ(a, b) are the constants of (A.3) and (3.9), respectively, there holds

σ

ε

∫ t

0

∑

K∈Th

|K|
d∑

i=1

(hi(wK)− zi,K)2+
∫ t

0

∑

e∈Γh

|e|
{

ae(wK − wKe
)2 + µ

d∑

i=1

bi
e(zi,K − zi,Ke

)2
}

≤
∑

K∈Th

|K|
{1

2
(w0

K)2 +
d∑

i=1

Ψi(z0
i,K)

}
≤ C ,

where ae, bi
e are defined in (3.10).

Proof. First we notice that (2.4) implies
∑

e∈∂K |e|gK(wK , wK) = 0,
∑

e∈∂K |e|gK
i (zi,K , zi,K) = 0 .

We then multiply (2.2a) by wK and (2.2b) by h−1
i (zi,K), sum over i and subtract the resulting

equations. Next if we multiply by |K| and sum we finally obtain

(3.11)

∑

K∈Th

|K|∂t

{
1
2
w2

K +
d∑

i=1

Ψi(zi,K)
}

+ σ
1
ε

∑

K∈Th

|K|
d∑

i=1

(hi(wK)− zi,K)2

+
∑

e∈Γh

|e|
{

wKgK(wK , wKe) + wKeg
Ke(wKe , wK)

}

−
d∑

i=1

∑

e∈Γh

|e|
{

h−1
i (zi,K)

[
gK

i (zi,K , zi,Ke)− gK
i (zi,K , zi,K)

]

+ h−1
i (zi,Ke)

[
gKe

i (zi,Ke , zi,K)− gKe
i (zi,Ke , zi,Ke)

]} ≤ 0 ,

Where we have used that −(w−h−1
i (z))Gi(w, zi) ≥ σ(hi(w)− zi)2, cf. (A1-3), (A.3′). We will first

estimate the terms corresponding to w-fluxes. Using (3.10) we get

∑

e∈Γh

|e|
{

wKgK(wK , wKe) + wKeg
Ke(wKe , wK)

}
=

∑

e∈Γh

|e|ae(wK − wKe)
2 ,
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since ∑

e∈Γh

|e|1
2

A · νe,K(w2
K − w2

Ke
) =

∑

e∈Γh

|e|
{1

2
A · νe,Kw2

K +
1
2

A · νe,Kew
2
Ke

}

=
∑

K∈Th

∑

e∈∂K

|e|1
2

A · νe,Kw2
K = 0 .

For the z fluxes of (3.11), using (3.10) for gK
i (zi,K , zi,Ke), we first write,

−h−1
i (zi,K)

[
gK

i (zi,K , zi,Ke)− gK
i (zi,K , zi,K)

]
= Ψ′(zi,K)

[1
2

Bi · νe,K − bi
e

]
(zi,Ke − zi,K),

where, as before, bi
e = bi

νe,K
= bi

νe,Ke
. By (2.5) 1

2 Bi ·νe,K−bi
e ≤ 0, and hence using Taylor’s formula

and (3.9), Ψ′i(c1)(c2 − c1) ≤ Ψ(c2)−Ψ(c1)− µ
2 (c1 − c2)2, we get

−h−1
i (zi,K)

[
gK

i (zi,K , zi,Ke)− gK
i (zi,K , zi,K)

] ≥[1
2

Bi · νe,K − bi
e

]
(Ψi(zi,Ke)−Ψi(zi,K))

+
1
2

µ
[
bi
e −

1
2

Bi · νe,K

]
(zi,K − zi,Ke)

2 .

Similarly,

−h−1
i (zi,Ke)

[
gKe

i (zi,Ke
, zi,K)− gKe

i (zi,Ke , zi,Ke)
] ≥[1

2
Bi · νe,Ke − bi

e

]
(Ψi(zi,K)−Ψi(zi,Ke

))

+
1
2

µ
[
bi
e −

1
2

Bi · νe,Ke

]
(zi,K − zi,Ke

)2 .

But then,
∑

e∈Γh

|e|
{[1

2
Bi · νe,K − bi

e

]
(Ψi(zi,Ke)−Ψi(zi,K)) +

[1
2

Bi · νe,Ke − bi
e

]
(Ψi(zi,K)−Ψi(zi,Ke))

}

=
∑

e∈Γh

|e|Bi · νe,K(Ψi(zi,Ke)−Ψi(zi,K)) = −
∑

e∈Γh

|e|
{

Bi · νe,KΨi(zi,K) + Bi · νe,KeΨi(zi,Ke)
}

=−
∑

K∈Th

∑

e∈∂K

|e|Bi · νe,KΨi(zi,K) = 0.

Therefore,

−
∑

e∈Γh

|e|
{

h−1
i (zi,K)

[
gK

i (zi,K , zi,Ke)− gK
i (zi,K , zi,K)

]

+ h−1
i (zi,Ke)

[
gKe

i (zi,Ke , zi,K)− gKe
i (zi,Ke , zi,Ke)

]} ≥
∑

e∈Γh

|e|µbi
e(zi,K − zi,Ke)

2 .

In view of these estimates (3.11) implies

(3.12)

∑

K∈Th

|K|∂t

{
1
2
w2

K +
d∑

i=1

Ψi(zi,K)
}

+ σ
1
ε

∑

K∈Th

|K|
d∑

i=1

(hi(wK)− zi,K)2

+
∑

e∈Γh

|e| ae(wK − wKe)
2 +

d∑

i=1

∑

e∈Γh

|e|µbi
e(zi,K − zi,Ke)

2 ≤ 0 ,

and the proof is complete. ¤
Distance from equilibrium. Next, we estimate supt

∑
K∈Th

|K|∑i |Gi(wK(t), zi,K(t))|2 .
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Lemma 3.4. Let (wh, Zh) be a solution of the semidiscrete scheme emanating from data with finite
total variation and lying in an (invariant) region Ra,b. Assume further that

(3.13)
∑

K∈Th

|K|
d∑

i=1

|Gi(wK(0), zi,K(0))|2 ≤ Cε.

Then, for any 1 > η > 0 there exists a constant Cη = C(η, a, b) such that

sup
t

∑

K∈Th

|K|
∑

i

|Gi(wK(t), zi,K(t))|2 ≤ Cη ε′, with ε′ = ε1−η .

Proof. Using the definition of the scheme, we have

∂tGi(wK(t), zi,K(t)) =
∂Gi

∂w

{
−

∑

e∈∂K

|e|
|K|g

K(wK , wKe) +
1
ε

d∑

j=1

Gj(wK(t), zj,K(t))
}

+
∂Gi

∂z

{
−

∑

e∈∂K

|e|
|K|g

K
i (zi,K , zi,Ke) +

1
ε
Gi(wK(t), zi,K(t))

}
.

Multiplying by Gi(wK , zi,K) = Gi and adding, we obtain

1
2

∂t

∑

i

|Gi(wK , zi,K)|2+1
ε

∑

i

(−∂Gi

∂z
)|Gi(wK , zi,K)|2 =

1
ε

d∑

i=1

∂Gi

∂w
Gi(wK , zi,K)

d∑

j=1

Gj(wK , zj,K)

+
d∑

i=1

Gi

(∂Gi

∂w

[
−

∑

e∈∂K

|e|
|K| (g

K(wK , wKe)− gK(wK , wK))
]

+
∂Gi

∂z

[
−

∑

e∈∂K

|e|
|K| (g

K
i (zi,K , zi,Ke)− gK

i (zi,K , zi,K))
])

.

Observe now that (A.2) implies that −∂Gi

∂z > c1 = c1(a, b) > 0 in Ra,b. Also, |gK(wK , wKe) −
gK(wK , wK)| ≤ ae|wK − wKe |. Therefore, if ε ≤ ChK , K ∈ Th, there exists a constant c0 =
c0(a, b) > 0, such that

(3.14) ∂t

∑

K∈Th

|K|
∑

i

|Gi(wK , zi,K)|2 +
c0

ε

∑

K∈Th

|K|
∑

i

|Gi(wK , zi,K)|2 ≤ CA ,

where
(3.14a)

A = σ
1
ε

∑

K∈Th

|K|
d∑

i=1

(hi(wK)− zi,K)2 +
∑

e∈Γh

|e| ae(wK − wKe)
2 +

d∑

i=1

∑

e∈Γh

|e|µbi
e(zi,K − zi,Ke)

2 ,

and Lemma 3.3 implies that, for any t > 0,
∫ t

0
A(s)ds ≤ C . By (3.14) and our assumption on the

initial data, we have
∑

K∈Th

|K|
∑

i

|Gi(wK(t),zi,K(t))|2 ≤ e−
c0
ε t

∑

K∈Th

|K|
∑

i

|Gi(wK(0), zi,K(0))|2

+ C

∫ t

0

e−
c0
ε (t−s)A(s)ds ≤ Cε + C

∫ t

0

e−
c0
ε (t−s)A(s)ds .
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Let 1 > η > 0, be an arbitrarily small number and ε′ = ε1−η. The proof of the Lemma will be
complete if we show

(3.15)
∫ t

0

e−
c0
ε (t−s)A(s)ds ≤ Cηε′ .

Since 1
εe−

c0
εη is bounded for ε → 0, we have, in view of Lemma 3.3,

∫ t−ε′

0

e−
c0
ε (t−s)A(s)ds ≤ ε

∫ t−ε′

0

1
ε
e−

c0
εη A(s)ds ≤ c ε

∫ t−ε′

0

A(s)ds ≤ cε .

On the other hand, for Nε = [ε−η] + 1,

(3.16)
∫ t

t−ε′
e−

c0
ε (t−s)A(s)ds ≤

∫ t

t−Nεε

A(s)ds ≤
Nε∑

m=1

∫ t−(m−1)ε

t−m ε

A(s)ds .

Then using (3.12), we obtain
(3.17)∫ t−(m−1)ε

t−m ε

A(s)ds ≤ C
∑

K∈Th

|K|
{
|w2

K(t−mε)− w2
K(t− (m− 1)ε)|

+
d∑

i=1

|Ψi(zi,K(t−mε))−Ψi(zi,K(t− (m− 1)ε))|
}

≤C ′(a, b)
∑

K∈Th

|K|
{
|wK(t−m ε)− wK(t− (m− 1)ε)|+

d∑

i=1

|zi,K(t−m ε)− zi,K(t− (m− 1)ε)|
}

≤C ′(a, b)
∑

K∈Th

|K|
{
|wK(ε)− wK(0)|+

d∑

i=1

|zi,K(ε)− zi,K(0)|
}

.

Here we also used that (wh, Zh) ∈ Ra,b, and the L1 contraction property (Lemma 3.2 (i)) for
(wh(·), Zh(·)) = (wh(·+ ε), Zh(·+ ε)). Let us assume that

(3.18)
∑

K∈Th

|K|
{
|wK(ε)− wK(0)|+

d∑

i=1

|zi,K(ε)− zi,K(0)|
}
≤ Cε .

Then, (3.16), (3.17) and (3.18) imply
∫ t

t−ε′
e−

c0
ε (t−s)A(s)ds ≤ CNε ε = C([ε−η] + 1)ε ≤ C ε′ ,

and the proof of (3.15) (and therefore of Lemma 3.4) will be complete. Hence it remains to verify
(3.18). To this end let 0 < τ ≤ ε; then, by (2.2), we see that

|K|
{
|wK(τ)− wK(0)|+

d∑

i=1

|zi,K(τ)− zi,K(0)|
}

≤ C

∫ τ

0

∑

e∈∂K

|e|
(
|wK − wKe |+

d∑

i=1

|zi,K − zi,Ke | +
1
ε

d∑

i=1

|K||Gi(wK , zi,K)|
)
ds .
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We estimate the terms of the right-hand side as follows

|Gi(wK(s), zi,K(s))| ≤ |Gi(wK(0), zi,K(0))|+ C(a, b)(|wK(s)− wK(0)|+ |zi,K(s)− zi,K(0)|)

and
|wK(s)− wKe(s)| ≤ |wK(0)− wKe(0)|+ |wK(s)− wK(0)|+ |wKe(s)− wKe(0)| .

Therefore in view of the stability of the local L2 projection in BV, cf. [C], our assumptions on the
initial data, we have upon summing over K and using again the fact that ε ≤ ChK , K ∈ Th,

∑

K∈Th

|K|
{
|wK(τ)− wK(0)|+

d∑

i=1

|zi,K(τ)− zi,K(0)|
}

≤ Cτ +
1
ε

∫ τ

0

∑

K∈Th

|K|
{
|wK(s)− wK(0)|+

d∑

i=1

|zi,K(s)− zi,K(0)|
}

ds .

Then, since τ ≤ ε, Gronwall’s lemma implies

∑

K∈Th

|K|
{
|wK(τ)− wK(0)|+

d∑

i=1

|zi,K(τ)− zi,K(0)|
}
≤ CeC τ

ε τ ≤ C ε .

The proof is thus complete. ¤

4. Convergence of the semidiscrete scheme

Our convergence results will be based on the following approximation lemma, [KKM], which
provides a compact form for deriving error estimates for numerical approximations to conservation
law (1.3). Lemma 4.1 is an extension of a result of Bouchut and Perthame [BP], and allows the
explicit treatment of terms that typically arise in numerical schemes.

Lemma 4.1. ( [KKM] ) Let uh, u ∈ L∞loc([0,∞), L1
loc(Rd)) be right continuous in t, with values in

L1
loc(Rd). Assume that u is the entropy solution of a given conservation law, i.e., it satisfies (1.3)

and

(4.1) ∂t|u− k|+
d∑

i=1

∂xi

[
(Fi(u)− Fi(k))sgn(u− k)

] ≤ 0 , in D′, for all k ∈ R,

with initial value u0 ∈ BV (Rd). Let Ψ be a nonnegative test function, Ψ ∈ C∞c ((0,∞) × Rd), and
assume that uh with initial value u0

h satisfies

(4.2)

−
∫∫

(0,∞)×Rd

(|uh − k|∂tΨ + sgn(uh − k)[F (uh)− F (k)] · ∇xΨ
)
dtdx

≤
∫∫

(0,∞)×Rd

(
αG|∂tΨ|+

∑

j

αj
H |

∂Ψ
∂xj

|+ βGBG(∂tΨ) +
∑

j

βj
HBj

H(
∂Ψ
∂xj

)
)
dxdt

for all k ∈ R,

where F = (F1, . . . , Fd) and αG, αj
H , βG, βj

H , are nonnegative k-independent functions in
L1

loc([0,∞)× Rd) and αG, βG ∈ L∞loc([0,∞), L1
loc(Rd)) .
12



Let ∆, ∆′ > 0, and Sh = {S} be a given decomposition of [0,∞)×Rd, into elements S, such that

(4.3)
diam(St) ≤ ∆ , if βj

H , is not identically zero for some j, j = 1, . . . , d, and

|Sx| ≤ ∆′ , if βG is not identically zero,

where Sx = {t : (t, x) ∈ S} and St = {x : (t, x) ∈ S}.
In addition, the k-independent operators BG, Bj

H satisfy: for all (t, x) ∈ S, 1 ≤ i, j ≤ d, there
holds

(4.4)

|Bj
H(

∂Ψ
∂xj

)(t, x)| ≤ C sup
x′∈St

| ∂Ψ
∂xj

(t, x′)| ,

|BG(∂tΨ)(t, x)| ≤ C sup
t′∈Kx

|∂tv(t′, x)| sup
t′∈Kx

|w(t′, x)|

+ C sup
t′∈Kx

|∂tw(t′, x)| sup
t′∈Kx

|v(t′, x)|χsupp ∂tw

where in the second relation Ψ = v w, and χΩ denotes the characteristic function of Ω. Here C is
a uniform constant independent of Ψ and the element decomposition Sh.
Then the following estimate holds: for any T ≥ 0, x0 ∈ Rd, R > 0, ν ≥ 0, with M = Lip(F ), we
have:

(4.5)

∫

|x−x0|<R

|uh(T, x)− u(T, x)|dx ≤
∫

B0

|uh(0, x)− u(0, x)|dx + (M ∆′ + ∆)TV (u0)

+ C(EG + EH + ẼG + ẼH) .

Here

EH =
1
∆

d∑

j=1

∫∫

0≤t≤T x∈Bt

αj
H(t, x)dxdt, ẼH =

1
∆

d∑

j=1

∫∫

0≤t≤T x∈B∆
t

βj
H(t, x)dxdt,

EG = (1 +
T

∆′ +
MT

∆ + ν
) sup

0≤t≤2T

∫

Bt

αG(t, x)dx, EG = (1 +
T

∆′ +
MT

∆ + ν
) sup

0≤t≤2T

∫

B∆′
t

βG(t, x)dx

and Bt = B(x0, R + M(T − t) + ∆ + ν), B∆
t = B(x0, R + M(T − t) + 2∆ + ν) and B∆′

t =
B(x0, R + M(T − t) + ∆ + ∆′ + ν).

Remark 4.1. The terms Bj
H , βj

H , j = 1, . . . , d, in (4.2), (4.4) can be replaced by one term BH , βH .
In this case (4.4) will be

|BH(∇xΨ(t, x))| ≤ C sup
x∈St

|∇xΨ(t, x)| ,

and ẼH will be modified accordingly.

We will use Lemma 4.1 to prove our convergence results. We introduce notation that will be
used in the sequel along with some preliminary results. In particular, for any k ∈ R we define ξ ∈ R
such that

k = ξ −
d∑

i=1

hi(ξ) and we set Uh = wh −
d∑

i=1

hi(wh) i.e., UK = wK −
d∑

i=1

hi(wK), K ∈ Th .
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Then UK − k = [wK − ξ] − ∑d
i=1[hi(wK) − hi(ξ)], and, since we assumed that the functions

hi, i = 1, . . . , d are decreasing, we get |UK − k| = |wK − ξ|+ ∑d
i=1 |hi(wK)− hi(ξ)|, i.e.,

(4.6) |UK − k| = |wK − ξ|+
d∑

i=1

|zi,K − hi(ξ)|+ JK with |JK | ≤ 1
σ

d∑

i=1

|Gi(wK , zi,K)|.

In view of (A.4) we have F (UK) = A(wK)−∑d
i=1 Bi(hi(wK)). Hence

(4.7)
[
F (UK)−F (k)

]
sgn(UK−k) =

{
[A(wK)−A(ξ)]−

d∑

i=1

[Bi(hi(wK))−Bi(hi(ξ))]
}

sgn(UK−k).

Now for wK − ξ > 0, we have by (A.2), hi(wK)−hi(ξ) < 0, hence, sgn
[
(wK − ξ)−∑d

i=1(hi(wK)−
hi(ξ))

]
> 0. So, by (4.7) we get

(4.7a)
[
F (UK)− F (k)

]
sgn(UK − k) = |wK − ξ|A +

d∑

i=1

|hi(wK)− hi(ξ)|Bi .

Similarly, (4.7a) holds, if wK − ξ < 0. Therefore,

(4.8)

[
F (UK)− F (k)

]
sgn(UK − k) =|wK − ξ|A +

d∑

i=1

|zi,K − hi(ξ)|Bi + HK ,

with |HK | ≤
d∑

i=1

|hi(wK)− zi,K ||Bi| .

Now we are ready to prove our convergence theorem for the semidiscrete scheme.

Theorem 4.1. Let u be the entropy solution of the conservation law (1.3) with initial data u0 ∈
BV (Rd)∩L∞(Rd). For Uh = wh−

∑d
i=1 hi(wh), where (wh, Zh) is the solution of the semidiscrete

finite volume scheme (2.2), assume that the assumptions of Lemma 3.4 hold and for some 1 >
η > 0, ε1−η ≤ Ch. Then, for any time t ≤ T and R > 0, there exists a constant C = (R +
MT )d/4T 1/2c(a, b) such that the following error estimate holds

‖u(·, t)− Uh(·, t)‖L1(B(0,R)) ≤ Ch1/4 + ‖u(·, 0)− Uh(·, 0)‖L1 .

If in addition ‖u0 − (wε
0 −

∑d
i=1 hi(wε

0))‖L1 ≤ Cε, then

‖u(·, t)− Uh(·, t)‖L1(B(0,R)) ≤ Ch1/4 .

Proof. To apply Lemma 4.1 we consider a nonnegative test function Ψ with compact support,
suppΨ = Ω. We also set

VK := |UK − k| and VF,K := [F (UK)− F (k)]sgn(UK − k).

Then, we would like to estimate the following quantity

(4.9) E := −
∫ ∑

K∈Th

∫

K

[VKΨt + VF,K · ∇xΨ]dx dt =: −(E1 + E2).
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For the first term, we have

(4.10)

E1 =
∫ ∑

K∈Th

∫

K

VKΨt dx dt =
∫ ∑

K∈Th

VK

∫

K

Ψt dx dt

=
∑

K∈Th

∫
VKΨ̄K

t dt where Ψ̄K
t =

∫

K

Ψt dt .

For the second term we have,

(4.11)

E2 =
∫ ∑

K∈Th

VF,K ·
∫

K

∇xΨ dx dt =
∫ ∑

K∈Th

∑

e∈∂K

VF,K · νe,K

∫

e

Ψ ds dt

=
∫ ∑

e∈Γh

(VF,K · νe,K + VF,Ke · νe,Ke)Ψ̄
e dt where Ψ̄e =

∫

e

Ψ ds .

Now, (4.8) and (3.7), cf. Remark 3.1, imply

VF,K · νe,K = DK
ξ (wK , wK) +

d∑

i=1

Di,K
ξ (zi,K , zi,K) + HK · νe,K .

Combining (4.9), (4.10) and (4.11) we have
(4.12)

E =−
∑

K∈Th

∫ {
|wK − ξ|+

d∑

i=1

|zi,K − hi(ξ)|
}

Ψ̄K
t dt−

∑

e∈Γh

∫ {
[DK

ξ (wK , wK) + DKe

ξ (wKe
, wKe

)]

+
d∑

i=1

[Di,K
ξ (zi,K , zi,K) + Di,Ke

ξ (zi,Ke , zi,Ke)]
}

Ψ̄e dt−
∑

K∈Th

( ∫
JKΨ̄K

t dt +
∫

HK ·
∫

K

∇xΨdx dt
)

.

There holds
∑

e∈∂K |e|DK
ξ (wK , wK) = 0 and

∑
e∈∂K |e|Di,K

ξ (zi,K , zi,K) = 0, i = 1, . . . , d. Thus, if
we multiply the discrete entropy inequality (3.8) by Ψ̄K and sum for all K ∈ Th, and get

(4.13)

−
∑

K∈Th

∫ {
|wK − ξ|+

d∑

i=1

|zi,K − hi(ξ)|
}

Ψ̄K
t dt

+
∑

e∈Γh

∫
|e|

{
(FK

w + FKe
w ) +

d∑

i=1

(FK
zi

+ FKe
zi

)
}

dt ≤ 0,

where FK
w = 1

|K| [D
K
ξ (wK , wKe)−DK

ξ (wK , wK)]Ψ̄K , FK
zi

= 1
|K| [D

i,K
ξ (zi,K , zi,Ke)−Di,K

ξ (zi,K , zi,K)]Ψ̄K ,

and FKe
w , FKe

zi
are defined by the same formulas with K and Ke interchanged. In view of (4.13),

we see that (4.12) implies

(4.14)

E ≤ −
∑

e∈Γh

∫
|e|

{
(FK

w + FKe
w ) +

d∑

i=1

(FK
zi

+ FKe
zi

)
}

dt

−
∑

e∈Γh

∫ {
DK

ξ (wK , wK) + DKe

ξ (wKe , wKe)
}

Ψ̄e dt

−
∑

e∈Γh

∫ { d∑

i=1

[Di,K
ξ (zi,K , zi,K) + Di,Ke

ξ (zi,Ke , zi,Ke)]
}

Ψ̄e dt

−
∑

K∈Th

∫ (
JKΨ̄K

t + HK ·
∫

K

∇xΨdx
)

dt.
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Now for the w-terms in (4.14) we have using the properties of the discrete fluxes,

− |e|
|K|

{
DK

ξ (wK , wKe)−DK
ξ (wK , wK)

}
Ψ̄K − |e|

|Ke|
{

DKe

ξ (wKe , wK)−DKe

ξ (wKe , wKe)
}

Ψ̄Ke

−
{

DK
ξ (wK , wK) + DKe

ξ (wKe
, wKe

)
}

Ψ̄e +
{

DK
ξ (wK , wKe

) + DKe

ξ (wKe
, wK)

}
Ψ̄e

=
{

DK
ξ (wK , wKe)−DK

ξ (wK , wK)
}{

Ψ̄e − |e|
|K| Ψ̄

K
}

+
{

DKe

ξ (wKe , wK)−DKe

ξ (wKe , wKe)
}{

Ψ̄e − |e|
|Ke| Ψ̄

Ke

}

≤ C ae|wK − wKe |
∣∣∣Ψ̄e − |e|

|K| Ψ̄
K

∣∣∣ + C ae|wK − wKe |
∣∣∣Ψ̄e − |e|

|Ke| Ψ̄
Ke

∣∣∣.

A similar inequality holds true for the z-terms in (4.14). Hence summing back to the elements K,

(4.15)

E ≤
∑

K∈Th

∑

e∈∂K

∫ {
ae|wK − wKe

|+
d∑

i=1

bi
e|zi,K − zi,Ke

|
}∣∣∣∣Ψ̄e − |e|

|K| Ψ̄
K

∣∣∣∣dt

−
∑

K∈Th

∫ (
JKΨ̄K

t + HK ·
∫

K

∇xΨdx
)

dt.

To adjust to the notation of Lemma 4.1 let Sh = {SK}, SK = ([0,+∞)×K), K ∈ Th be a partition
of [0, +∞)× Rd. Then, for any t > 0, (SK)t = K.

Further, we set

BH(∇xΨ)
∣∣∣∣
SK

(x, t) =
1
|K|

∣∣∣∣|e|Ψ(x, t)− Ψ̄e(t)
∣∣∣∣.

Then, since x ∈ K, we have

(4.16)

1
|K|

∣∣∣∣|e|Ψ(x, t)− Ψ̄e(t)
∣∣∣∣ =

1
|K|

∣∣∣∣|e|Ψ(x, t)−
∫

e

Ψ(S, t) dS

∣∣∣∣

≤ 1
|K|ChK |e| sup

x′∈K
|∇Ψ(x′, t)| ≤ C sup

x′∈K
|∇Ψ(x′, t)| ,

i.e., (4.4) is satisfied.
In view of (4.15), Uh satisfies (4.2) with Sh = {SK}, K ∈ Th as above, and

(4.17)

αH

∣∣
SK = |HK | , αG

∣∣
SK = |JK | ,

βH

∣∣∣
SK

= C
∑

e∈∂K

{
ae|wK − wKe |+

d∑

i=1

bi
e|zi,K − zi,Ke |

}
.

Next, we will estimate the terms on the right hand side of (4.5) in our case for ν = 0,∆ = ∆′ and
uh = Uh. The only nonzero E−terms are EH , EG and ẼH . By (4.17), (4.8) and Lemma 3.3, we
obtain for R, T fixed,

EH ≤ 1
∆

{ ∫∫

0≤t≤T x∈Bt

(
αH(t, x)

)2

dxdt
}1/2{ ∫

0≤t≤T

|Bt|dt
}1/2

≤ 1
∆

(R + MT )d/2T 1/2Cε1/2 .
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Similarly, (4.17), (4.6) and Lemma 3.4 imply

EG = (1 +
(1 + M)T

∆
) sup

0≤t≤2T

∫

Bt

αG(t, x)dx ≤ (R + MT )d/2Cη(1 +
MT

∆
)ε1/2−η/2 .

Finally, (4.17) and Lemma 3.3 yields

ẼH ≤ 1
∆

C

∫

0≤t≤T

∑

K∩B∆
t

|K|
∑

e∈∂K

{
ae|wK − wKe |+

d∑

i=1

bi
e|zi,K − zi,Ke |

}

≤ 1
∆

(R + MT )d/2T 1/2C

{∫

0≤t≤T

h
∑

e∈Γh

|e|
{

ae|wK − wKe |2 +
d∑

i=1

bi
e|zi,K − zi,Ke |2

}}1/2

≤ Ch1/2

∆
(R + MT )d/2T 1/2 .

Using the above estimates in Lemma 4.1 we have, for t ≤ T,

∫

|x|<R

|uh(t, x)− u(t, x)|dx ≤ C
(
∆ +

(R + MT )d/2Th1/2

∆

)
+

∫

B0

|Uh(0, x)− u(0, x)|dx ,

and the proof of the theorem is complete by minimizing over ∆. ¤

5. Stability estimates for the fully discrete schemes

We consider now fully discrete finite volume schemes for (1.1-2) defined in section 2. In the
proofs of the estimates in this section we shall assume that the following CFL condition is satisfied

(5.1)
δ|∂K|
|K| max{aK ,

µ̄2

µ2
bK} ≤ 1

8
,

with aK = max
e∈∂K

ae, bK = max
1≤i≤d

max
e∈∂K

bi
e, and µ̄ = µ̄(a, b) = max

1≤i≤d
sup

ζ∈[hi(b),hi(a)]

|Ψ′′i (ζ)|,
ae, b

i
e, Ψi and µ are defined in Section 3, cf. (3.9). In Lemmas 5.1 and 5.2 we actually need a

weaker mesh condition than (5.1), cf. (5.9).
We prove first a comparison principle analogous to Lemma 3.1.

Lemma 5.1. Let (wh,δ, Zh,δ) and (wh,δ, Zh,δ) be two solutions of (2.7) that vanish outside a ball
BM of radius M . Let also Wn = wn

K − w̄n
K and Zn

i = zn
i,K − z̄n

i,K , i = 1, . . . , d, K ∈ Th. Then we
have

(5.2)

(Wn+1)+ +
d∑

i=1

(Zn+1
i )−

+
δ

|K|
∑

e∈∂K

|e|χWn+1>0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]

+
δ

|K|
d∑

i=1

χZn+1
i <0

∑

e∈∂K

|e|[gK
i (zn

i,K ∨ z̄n
i,K , zn

i,Ke
∨ z̄n

i,Ke
)− gK

i (zn
i,K ∧ z̄n

i,K , zn
i,Ke

∧ z̄n
i,Ke

)
]

≤ (Wn)+ +
d∑

i=1

(Zn
i )− ,
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provided the CFL- condition (5.1) holds.

Proof. Multiplying the equations that Wn+1, Zn+1
i , satisfy cf. (2.7), by χWn+1>0 and −χZn+1

i <0,
respectively, sum over i and and using the monotonicity properties of Gi, i = 1, . . . , d, we obtain

(5.3) (Wn+1)+ +
d∑

i=1

(Zn+1
i )− − δ

|K|
∑

e∈∂K

|e|(T e
w +

d∑

i=1

T e
zi

) ≤ χWn+1>0Wn −
d∑

i=1

χZn+1
i <0Zn

i ,

where T e
w := −χWn+1>0

[
gK(wn

K , wn
Ke

) − gK(w̄n
K , w̄n

Ke
)
]
, and T e

zi
:= χZn+1

i <0

[
gK

i (zn
i,K , zn

i,Ke
) −

gK
i (z̄n

i,K , z̄n
i,Ke

)
]
. Next, we estimate Tw = T e

w and Tzi = T e
zi

. We distinguish two cases :
(i). First we assume that χWn+1>0 = χWn>0 and χZn+1

i <0 = χZn
i <0. Then, as in Lemma 3.1, we

have
Tw ≤ −χWn+1>0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]
,

Tzi ≤ −χZn+1
i <0

[
gK

i (zn
i,K ∨ z̄n

i,K , zn
i,Ke

∨ z̄n
i,Ke

)− gK(zn
i,K ∧ z̄n

i,K , zn
i,Ke

∧ z̄n
i,Ke

)
]
.

Hence (5.2) follows.
(ii). Now suppose that χWn+1>0 = χWn<0 and χZn+1

i <0 = χZn
i >0.

For the first term we have

Tw ≤− χWn<0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]

+ χWn<0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∨ w̄n

Ke
)
]

− χWn<0

[
gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)− gK(wn

K ∨ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]

=− χWn<0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]

+ 2aχWn<0(wn
K ∨ w̄n

K − wn
K ∧ w̄n

K),

with a = ∂gK(u,v)
∂u = ae + A · ν/2 ≥ 0. If χWn<0 = 1 then

(5.4) Tw ≤ −χWn<0

[
gK(wn

K ∨ w̄n
K , wn

Ke
∨ w̄n

Ke
)− gK(wn

K ∧ w̄n
K , wn

Ke
∧ w̄n

Ke
)
]
+ 2a(Wn)−,

and if χWn<0 = 0 then (5.4) holds trivially. A similar argument applies for the Zn
i –term as well,

and therefore, if bi = bi
e + Bi · ν/2 ≥ 0,

(5.5) Tzi ≤ −χZn+1
i <0

[
gK

i (zn
i,K ∨ z̄n

i,K , zn
i,Ke

∨ z̄n
i,Ke

)− gK(zn
i,K ∧ z̄n

i,K , zn
i,Ke

∧ z̄n
i,Ke

)
]
+ 2bi(Zn

i )+.

Now if χWn+1>0 = χWn<0 = 1 (otherwise the inequality reduces to a trivial one) we have
χWn>0 = 0 and similarly χZn

i <0 = 0; hence, from (5.4), (5.5) and (5.3) we get relation (5.2) with
right-hand side

(Wn)+ +
d∑

i=1

(Zn
i )− +

{
−1 +

δ|∂K|
|K| 4aK

}
(Wn)− +

d∑

i=1

{
−1 +

δ|∂K|
|K| 4bK

}
(Zn

i )+ .

But then the CFL condition (5.1) implies that the last two terms are non positive and (5.2) follows.
The other cases are treated similarly and the proof of the lemma is complete. ¤

The comparison principle (5.2) now gives the L1–contraction property of the fully discrete scheme
as well as a discrete entropy inequality.
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Lemma 5.2. (i)Under the assumptions of Lemma 5.1 we have

(5.6)

‖wh,δ(tn+1)− w̄h,δ(tn+1)‖L1+
d∑

i=1

‖zi,h,δ(tn+1)− z̄i,h,δ(tn+1)‖L1

≤ ‖wh,δ(tn)− w̄h,δ(tn)‖L1 +
d∑

i=1

‖zi,h,δ(tn)− z̄i,h,δ(tn)‖L1 .

(ii) (Entropy Inequality). For any ξ ∈ R we have

|wn+1
K − ξ|+

d∑

i=1

|zn+1
i,K − hi(ξ)|+ δ

|K|
∑

e∈∂K

|e|
{

DK
ξ (wn

K , wn
Ke

) +
d∑

i=1

Di,K
ξ (zn

i,K , zn
i,Ke

)
}

≤ |wn
K − ξ|+

d∑

i=1

|zn
i,K − hi(ξ)|.(5.7)

(iii) If, for some a < b, we have a ≤ w0
K ≤ b, hi(b) ≤ z0

i,K ≤ hi(a), i = 1, . . . , N, K ∈ Th, then

a ≤ wn
K ≤ b, hi(b) ≤ zn

i,K ≤ hi(a), K ∈ Th, i = 1, . . . , N,

i.e., the region Ra,b = [a, b]×∏d
i=1[hi(b), hi(a)] is positively invariant.

Proof. (i) The L1 contraction property is a direct application comparison principle and of the fact
that gK(|wn

K − w̄n
K |, |wn

Ke
− w̄n

Ke
|)] + gKe(|wn

Ke
− w̄n

Ke
|, |wn

K − w̄n
K |)

]
= 0, cf. Lemma 3.2.

(ii) Letting w̄n
K = ξ and z̄n

i,K = hi(ξ), i = 1, . . . , d, for any ξ ∈ R, (5.2) yields (5.7).
(iii) To prove this part it suffices to combine arguments similar to those used in the proofs

of Lemma 3.2(ii) and Lemma 5.1. Let us only notice that in the case χWn+1>0 = χWn<0 and
χZn+1

i <0 = χZn
i >0, one can see that

χWn+1>0g
K(wn

K−w̄n
K , wn

Ke
− w̄n

Ke
) = χWn<0g

K(wn
K − w̄n

K , wn
Ke
− w̄n

Ke
)

≥gK((wn
K − w̄n

K)+, (wn
Ke
− w̄n

Ke
)+)− 2ae(wn

K − w̄n
K)−

−χZn+1
i <0g

K
i (zn

i,K−z̄n
i,K , zn

i,Ke
− z̄n

i,Ke
) = −χZn

i >0g
K
i (zn

i,K − z̄n
i,K , zn

i,Ke
− z̄n

i,Ke
)

≥− gK((zn
i,K − z̄n

i,K)−, (zn
i,Ke

− z̄n
i,Ke

)−)− 2bi
e(z

n
i,K − z̄n

i,K)+ ,

and the CFL condition implies

∑

K∈Th

|K|
{

(Wn+1)+ +
d∑

i=1

(Zn+1
i )−

}
≤

∑

K∈Th

|K|
{

(Wn)+ +
d∑

i=1

(Zn
i )−

}
.

Hence (iii) follows. ¤
Next we show the analogous of Lemma 3.3 for the fully discrete scheme.

Lemma 5.3. Assume that the initial data (w0
K , z0

i,K) ∈ Ra,b, i = 1, . . . , d, for some a, b ∈ R. Then
if σ = σ(a, b) and µ = µ(a, b) are the constants of (A.3) and (3.9), respectively, there holds

∑

K∈Th

|K|
{

1
2
(wn+1

K )2 +
d∑

i=1

Ψi(zn+1
i,K )

}
+ δ

∑

e∈Γh

ae

2
|e|(wn+1

K − wn+1
Ke

)2

+ δ

d∑

i=1

∑

e∈Γh

µ
bi
e

2
|e|(zn+1

i,K − zn+1
i,Ke

)2 +
σδ

ε

d∑

i=1

∑

K∈Th

|K|(hi(wn+1
K )− zn+1

i,K )2(5.8)

≤
∑

K∈Th

|K|
{

1
2
(wn

K)2 +
d∑

i=1

Ψi(zn
i,K)

}
,
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provided that the CFL condition (5.1) holds.

Proof. We multiply (2.7a) by wn+1
K and (2.7b) by h−1

i (zn+1
i,K ), to obtain

(wn+1
K )2 = wn+1

K wn
K − δ

|K|
∑

e∈∂K

|e|wn+1
K gK(wn

K , wn
Ke

) +
δ

ε

d∑

i=1

wn+1
K Gi(wn+1

K , zn+1
i,K )

and

−Ψ′i(z
n+1
i,K )zn+1

i,K =−Ψ′i(z
n+1
i,K )zn

i,K

− δ

|K|
∑

e∈∂K

|e|h−1
i (zn+1

i,K )gK
i (zn

i,K , zn
i,Ke

) +
δ

ε
h−1

i (zn+1
i,K )Gi(wn+1

K , zn+1
i,K ).

Now, since Ψi satisfies (3.9), Ψ′i(y)(x− y) ≤ Ψi(x)−Ψi(y)− µ
2 (x− y)2, we get by summing over i

and subtracting the resulting relations

∑

K∈Th

|K|
{

1
2
(wn+1

K )2 +
d∑

i=1

Ψi(zn+1
i,K )

}
+

∑

K∈Th

|K|1
2
(wn

K − wn+1
K )2 +

∑

K∈Th

|K|µ
2

(zn
i,K − zn+1

i,K )2

+ δ
∑

K∈Th

∑

e∈∂K

|e|wn+1
K gK(wn

K , wn
Ke

)− δ

d∑

i=1

∑

K∈Th

∑

e∈∂K

|e|h−1
i (zn+1

i,K )gK
i (zn

i,K , zn
i,Ke

)

+
δ

ε

d∑

i=1

∑

K∈Th

|K|φi(wn+1
K , zn+1

i,K ) ≤
∑

K∈Th

|K|
{

1
2
(wn

K)2 +
d∑

i=1

Ψi(zn
i,K)

}
,

where φi(w, zi) = −(w − h−1
i (z))Gi(w, zi). As in Lemma 3.3, and in view of our assumptions on

hi, Gi, we have φi(w, zi) ≥ σ(hi(w)− zi)2.
We next estimate the terms corresponding to the w-fluxes. We have

∑

K∈Th

∑

e∈∂K

|e|wn+1
K gK(wn

K , wn
Ke

) =
∑

K∈Th

∑

e∈∂K

|e|wn+1
K gK(wn+1

K , wn+1
Ke

)

+
∑

K∈Th

∑

e∈∂K

|e|
{

wn+1
K gK(wn

K , wn
Ke

)− wn+1
K gK(wn+1

K , wn+1
Ke

)
}

:= W1 + W2

The W1–term is treated like in the semidiscrete case and we have,

W1 =
∑

e∈Γh

|e|ae(wn+1
K − wn+1

Ke
)2.

On the other hand we have for the W2–term, using the arith. geom. mean inequality and
|A·νe,K |

2 ≤ ae,

−W2 ≤
∑

e∈Γh

|e|2ae|wn+1
Ke

− wn+1
K |

(
|wn

K − wn+1
K |+ |wn

Ke
− wn+1

Ke
|
)

≤
∑

e∈Γh

|e|
{ae

2
(wn+1

Ke
− wn+1

K )2 + 4ae(wn
K − wn+1

K )2 + 4ae(wn
Ke
− wn+1

Ke
)2

}
.

20



For the terms corresponding to the z–fluxes we have

−
d∑

i=1

∑

K∈Th

∑

e∈∂K

|e|h−1
i (zn+1

i,K )gK
i (zn

i,K , zn
i,Ke

) = −
d∑

i=1

∑

K∈Th

∑

e∈∂K

|e|h−1
i (zn+1

i,K )gK
i (zn+1

i,K , zn+1
i,Ke

)

+
d∑

i=1

∑

K∈Th

∑

e∈∂K

|e|
{

h−1
i (zn+1

i,K )gK
i (zn+1

i,K , zn+1
i,Ke

)− h−1
i (zn+1

i,K )gK
i (zn

i,K , zn
i,Ke

)
}

:= Z1 + Z2.

As before the Z1–term is treated as in the semidiscrete case, Z1 ≥
∑d

i=1

∑
e∈Γh

|e|µ bi
e(z

n+1
i,K −

zn+1
i,Ke

)2 . Further for the Z2–term we have

−Z2 ≤
d∑

i=1

∑

e∈Γh

|e| 2bi
e

∣∣Ψ′i(zn+1
i,K )−Ψ′i(z

n+1
i,Ke

)
∣∣(|zn+1

i,K − zn
i,K |+ |zn+1

i,Ke
− zn

i,Ke
|).

Hence using the arith. geom. mean inequality we get

−Z2 ≤
d∑

i=1

∑

e∈Γh

|e|
{

µ
bi
e

2
(zn+1

i,K − zn+1
i,Ke

)2 + 4
µ̄2

µ
bi
e

(
(zn+1

i,K − zn
i,K)2 + (zn+1

i,Ke
− zn

i,Ke
)2

)}
.

Notice now that
∑

e∈Γh

|e|
{

4ae(wn
K − wn+1

K )2 + 4ae(wn
Ke
− wn+1

Ke
)2

}
=

∑

K∈Th

∑

e∈∂K

|e|4ae(wn
K − wn+1

K )2 .

A similar relation holds for the z-terms. Therefore

∑

K∈Th

|K|
{

1
2
(wn+1

K )2 +
d∑

i=1

Ψi(zn+1
i,K )

}
+

∑

K∈Th

|K|1
2
(wn

K − wn+1
K )2 +

∑

K∈Th

|K|µ
2

(zn
i,K − zn+1

i,K )2

+ δ
∑

e∈Γh

|e|
(ae

2
(wn+1

K − wn+1
Ke

)2 +
d∑

i=1

µ
bi
e

2
(zn+1

i,K − zn+1
i,Ke

)2
)

+
δ

ε

d∑

i=1

∑

K∈Th

|K|σ(hi(wn+1
K )− zn+1

i,K )2

≤
∑

K∈Th

(
|K|

{
1
2
(wn

K)2 +
d∑

i=1

Ψi(zn
i,K)

}
+ δ|∂K|4aK(wn

K − wn+1
K )2 + δ|∂K|4bi

K µ̄2

µ
(zn+1

i,K − zn
i,K)2

)

and (5.8) follows by using the CFL condition (5.1). ¤
Lemma 5.4. Let (wh,δ, Zh,δ) be a solution of the scheme (2.7) emanating from data with finite
total variation and lying in an (invariant) region Ra,b. In addition to (A.1-3) we assume that

(5.9)
(
− ∂Gi

∂zi
−

∑

j

∣∣∣∂Gj

∂w

∣∣∣
)
≥ c1 > 0 in Ra,b.

Let ε1−η ≤ Cδ, where 1 > η > 0 is any small number. Assume further that (3.13) and (5.8) hold.
Then for any n = 0, 1, . . . , there holds

∑

K∈Th

|K|
(
|wn+1

K − wn
K |+

∑

i

|zn+1
i,K − zn

i,K |
)
≤ Cδ and(5.10)

∑

K∈Th

|K|
∑

i

|Gi(wn
K , zn

i,K)|2 ≤ Cδ.(5.11)
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Proof. By the L1 contraction property (Lemma 5.2 (i)) it follows,

∑

K∈Th

|K|
(
|wn+1

K − wn
K |+

∑

i

|zn+1
i,K − zn

i,K |
)
≤

∑

K∈Th

|K|
(
|w1

K − w0
K |+

∑

i

|z1
i,K − z0

i,K |
)
.

To estimate w1
K − w0

K and z1
i,K − z0

i,K we have to estimate first |Gi(w1
K , z1

i,K)| : As in [KKM,
Proposition 4.6] we have

(5.12)

Gi(w1
K ,z1

i,K)−Gi(w0
K , z0

i,K) =

=
( ∫ 1

0

∂Gi

∂w
(`(s))ds

)[
− δ

∑

e∈∂K

|e|
|K|g

K(w0
K , w0

Ke
) +

δ

ε

∑

j

Gj(w1
K , z1

j,q)
]

+
(∫ 1

0

∂Gi

∂z
(`(s))ds

)[
− δ

∑

e∈∂K

|e|
|K|g

K
i (z0

i,K , z0
i,Ke

) +
δ

ε
Gi(w1

K , z1
i,K)

]
,

where `(s) =
(
w0

K + (w1
K − w0

K)s, z0
i,K + (z1

i,K − z0
i,K)s

)
. Multiplying (5.12) by sgn Gi(w1

K , z1
i,K),

and summing with respect to i, we finally obtain,

d∑

i=1

|K| |Gi(w1
K , z1

i,K)|+ δ

ε

d∑

i=1

∫ 1

0

(
− ∂Gi

∂zi
(`(s))−

∑

j

∣∣∣∂Gj

∂w
(`(s))

∣∣∣
)
ds |K| |Gi(w1

K , z1
i,K)|

≤
d∑

i=1

|K| |Gi(w0
K , z0

i,K)|+ Cδ
∑

e∈∂K

|e|
(
|w0

K − w0
Ke
|+

d∑

i=1

|z0
i,K − z0

i,Ke
|
)

.

Hence using (5.9), (2.7) implies

∑

K∈Th

|K|
(
|w1

K−w0
K |+

∑

i

|z1
i,K − z0

i,K |
)

≤ C

d∑

i=1

|K| |Gi(w0
K , z0

i,K)|+ Cδ
∑

e∈∂K

|e|
(
|w0

K − w0
Ke
|+

d∑

i=1

|z0
i,K − z0

i,Ke
|
)

.

Thus (5.10) follows in view of the BV stability of the L2 projection, cf [C], and of (3.13).
To prove (5.11), we start from (5.12) for n, n + 1 instead of 0, 1, we multiply by Gi(wn+1

K , zn+1
i,K ),

and as in the semidiscrete case, cf. (3.14), we finally obtain

(5.13)
(
1 +

c1δ

ε

) ∑

K∈Th

|K|
∑

i

|Gi(wn+1
K , zn+1

i,K )|2 ≤
∑

K∈Th

|K|
∑

i

|Gi(wn
K , zn

i,K)|2 + CAn ,

where

(5.14)

An =σ
δ

ε

∑

K∈Th

|K|
d∑

i=1

(hi(wn
K)− zn

i,K)2

+ δ
∑

e∈Γh

|e| ae(wn
K − wn

Ke
)2 + δ

d∑

i=1

∑

e∈Γh

|e|µbi
e(z

n
i,K − zn

i,Ke
)2 .
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Relation (5.13) implies that for any n,
(5.15)
∑

K∈Th

|K|
∑

i

|Gi(wn
K , zn

i,K)|2 ≤
(
1+

c1δ

ε

)−n ∑

K∈Th

|K|
∑

i

|Gi(w0
K , z0

i,K)|2+C

n−1∑

j=0

(
1+

c1δ

ε

)−(n−j)

Aj .

Next we show that the last term of (5.15) is of the order O(δ). To this end, let 1 > η > 0, an
arbitrary small number. In view of our assumption ε1−η ≤ Cδ, we see that as ε → 0

ε−η
(
1 +

c1δ

ε

)−1

≤ ε−η
(
1 +

C

εη

)−1

≤ Cη.

Let Mη be the smallest integer such that ηMη ≥ 1. By Lemma 5.3,
∑n

j=0Aj ≤ C, and therefore,

n−1∑

j=0

(
1 +

c1δ

ε

)−(n−j)

Aj =
n−Mη∑

j=0

(
1 +

c1δ

ε

)−(n−j)

Aj +
n−1∑

j=n−Mη+1

(
1 +

c1δ

ε

)−(n−j)

Aj

≤
(
1 +

C

εη

)−Mη
n−Mη∑

j=0

Aj +
(
1 +

C

εη

)−1 n−1∑

j=n−Mη+1

Aj

≤ Cεη Mη + Cεη
n−1∑

j=n−Mη+1

Aj ≤ Cε + Cεη
n−1∑

j=n−Mη+1

Aj .

Using (5.8) and (5.10) each Aj can be estimated as (compare with (3.17))

Aj ≤ C(a, b)
∑

K∈Th

|K|
(
|wj

K − wj−1
K |+

∑

i

|zj
i,K − zj−1

i,K |
)
≤ Cδ .

Hence
∑n−1

j=0

(
1 + c1δ

ε

)−(n−j)

Aj ≤ C ε + CMηεη δ ≤ C δ , and the proof is complete . ¤

Remark 5.1. The assumption (5.9) was used only to show

(5.9′)
∑

K∈Th

|K|
(
|w1

K − w0
K |+

∑

i

|z1
i,K − z0

i,K |
)
≤ Cδ.

So, it can be replaced by assuming that (5.9′) holds. In any case, Lemma 4.1 of [KT1] shows that
(5.9) is satisfied by choosing hi, and Gi appropriately. Note also that this assumption was used in
the proofs of the error estimates in [KT1] and [KKM].

6. Convergence of the fully discrete scheme

As in section 4 we will use Lemma 4.1. For any k ∈ R let ξ ∈ R such that k = ξ −∑d
i=1 hi(ξ)

and we set

Uh,δ = wh,δ −
d∑

i=1

hi(wh,δ) and Un
K = wn

K −
d∑

i=1

hi(wn
K), K ∈ Th , n = 0, 1, . . . .

Also,

(6.1) |Un
K − k| = |wn

K − ξ|+
d∑

i=1

|zn
i,K − hi(ξ)|+ Jn

K with |Jn
K | ≤

1
σ

d∑

i=1

|Gi(wn
K , zn

i,K)|,
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and

(6.2)

[
F (Un

K)− F (k)
]
sgn(Un

K − k) =|wn
K − ξ|A +

d∑

i=1

|zn
i,K − hi(ξ)|Bi + Hn

K ,

with |Hn
K | ≤

d∑

i=1

|hi(wn
K)− zn

i,K ||Bi| .

We prove the following convergence result for the fully discrete scheme

Theorem 6.1. Let u be the entropy solution of the conservation law (1.3) with initial data u0 ∈
BV (Rd) ∩ L∞(Rd), and let ‖u0 − (wε

0 −
∑d

i=1 hi(wε
0))‖L1 ≤ Cε. For Uh,δ = wh,δ −

∑d
i=1 hi(wh,δ),

where (wh,δ, Zh,δ) is the solution of the finite volume scheme (2.7), assume that the assump-
tions of Lemma 5.4 hold. Then for any time t ≤ T, and R > 0 there is a constant C =
(R + MT )d/4T 1/2c(a, b) such that the following error estimate holds

‖u(·, t)− Uh,δ(·, t)‖L1(B(0,R)) ≤ C
(
h1/4 + δ1/4) + ‖u(·, 0)− Uh,δ(·, 0)‖L1 .

If in addition ‖u0 − (wε
0 −

∑d
i=1 hi(wε

0))‖L1 ≤ Cε, then

‖u(·, t)− Uh,δ(·, t)‖L1(B(0,R)) ≤ C
(
h1/4 + δ1/4)

Proof. Let Ψ a nonnegative test function with compact support and set

V n
K := |Un

K − k| and V n
F,K := [F (Un

K)− F (k)]sgn(Un
K − k).

To apply Lemma 4.1 we have to estimate

(6.3) E := −
∞∑

n=0

∫

In

∑

K∈Th

∫

K

[V n
KΨt + V n

F,K · ∇xΨ]dx dt =: −(E1 + E2),

where In = [nδ, (n + 1)δ).
For term corresponding to space discretization we have as in the semidiscrete case,

(6.4) E2 =
∞∑

n=0

∑

e∈Γh

(V n
F,K · νe,K + V n

F,Ke
· νe,Ke)

∫

In

Ψ̄e where Ψ̄e =
∫

e

Ψ ds .

To estimate the other term, let Wn
K := |wn

K − ξ| + ∑d
i=1 |zn

i,K − hi(ξ)| then V n
K = Wn

K + Jn
K ,

cf., (6.1). We then have summing by parts for Ψ̄K =
∫

K
Ψ dt and Ψ̄K

t =
∫

K
Ψt dt,

E1 =
∞∑

n=0

∑

K∈Th

V n
K

∫

In

∫

K

Ψt dt dx =
∞∑

n=0

∑

K∈Th

Wn
K

∫

In

Ψ̄K
t dt +

∞∑
n=0

∑

K∈Th

Jn
K

∫

In

Ψ̄K
t dt

=
∑

K∈Th

∞∑
n=0

(
Wn

K −Wn+1
K

)1
δ

∫

In

Ψ̄Kdt +
∑

K∈Th

∞∑
n=0

(
Wn

K −Wn+1
K

)[
Ψ̄K(tn+1)− 1

δ

∫

In

Ψ̄Kdt
]

+
∞∑

n=0

∑

K∈Th

Jn
K

∫

In

Ψ̄K
t dt .
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We multiply the discrete entropy inequality (5.7) by 1
δ

∫
In

Ψ̄Kdt and we sum with respect to K and
n. As in the proof of Theorem 4.1 we finally conclude

(6.5)

E ≤
∞∑

n=0

∑

K∈Th

∑

e∈∂K

{
ae|wn

K − wn
Ke
|+

d∑

i=1

bi
e|zn

i,K − zn
i,Ke

|
} ∫

In

∣∣∣∣Ψ̄e − |e|
|K| Ψ̄

K

∣∣∣∣dt

+
∞∑

n=0

∑

K∈Th

∣∣Wn+1
K −Wn

K

∣∣
∫

K

∣∣∣Ψ(tn+1, x)− 1
δ

∫

In

Ψ(t, x)dt
∣∣∣dx

−
∞∑

n=0

∑

K∈Th

(
Jn

K

∫

In

Ψ̄K
t dt + Hn

K ·
∫

In

∫

K

∇xΨdx
)

dt.

To adjust to the notation of Lemma 4.1 let Sh = {Sn
K}, Sn

K = In ×K, K ∈ Th be a partition of
[0,+∞)× Rd. Then, for any t > 0, (Sn

K)t = K. If

BH(∇xΨ)
∣∣∣
SK

(x, t) =
1
|K|

∣∣∣|e|Ψ(x, t)− Ψ̄e(t)
∣∣∣,

then (4.4) is satisfied, cf. (4.16). Let also

BG(∂tΨ)
∣∣∣
Sn

K

(x, t) =
1
δ2

∫

In

∣∣∣Ψ(tn+1, x)−Ψ(t, x)dt
∣∣∣ .

If Ψ = vw, then

|Ψ(tn+1, x)−Ψ(t, x)| ≤ |(v(tn+1, x)− v(t, x))w(tn+1, x)|+ |(w(tn+1, x)− w(t, x))v(t, x)|,

and (4.4) follows upon integrating. Therefore (6.5) implies that Uh,δ satisfies (4.2) if

αH

∣∣
Sn

K

= |Hn
K | , αG

∣∣
Sn

K

= |Jn
K | ,

βH

∣∣∣
Sn

K

= C
∑

e∈∂K

{
ae|wn

K − wn
Ke
|+

d∑

i=1

bi
e|zn

i,K − zn
i,Ke

|
}

,

βG

∣∣∣
Sn

K

= |wn+1
K − wn

K |+
∑

i

|zn+1
i,K − zn

i,K | .

Then (4.5) holds for ν = 0, ∆ = ∆′ and uh = Uh,δ. Let R, T fixed. The terms EH , EG and ẼH are
estimated as in the semidiscrete case using here the stability estimates of Lemmas 5.3 and 5.4. By
Lemma 5.4,

ẼG = (1 +
(1 + M)T

∆
) sup

0≤t≤2T

∫

B∆
t

βG(t, x)dx ≤ Cδ .

The desired result now follows by minimizing over ∆ (4.5).
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