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Abstract. In this paper we derive a posteriori error estimates for space
discrete approximations of the time dependent Stokes equations. By
using an appropriate Stokes reconstruction operator we are able to write
an auxiliary error equation in pointwise form that satisfies the exact
divergence free condition. Thus standard energy estimates from pde
theory can be applied directly to yield a posteriori estimates that rely
on available corresponding estimates of the stationary Stokes equation.
Estimates of optimal order in L∞(L2) and in L∞(H1) for the velocity
are derived for finite element and finite volume approximations.

1. Introduction

We consider the nonstationary Stokes problem for incompressible flow:

ut −∆u +∇p = f in Ω× [0, T ],

div u = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(·, 0) = u0(·) in Ω,

(1.1)

where Ω is a bounded domain of Rd (d = 2, 3) with sufficiently smooth
boundary for our purposes. The above equation is discretized in space by
finite elements or finite volumes. We are interested in proving a posteriori
estimates for these approximations. The problem of proving a posteriori
estimates for time dependent Stokes equations is rather open, although it
is directly related to the important problem of error control for the time
dependent Navier–Stokes equations. This is partly due to the fact that even
in the case of linear parabolic problems the development of the theory of a
posteriori error control is still in progress, see e.g. [14, 23] and [22, 2, 9, 21].
Additional technical difficulties appear in the case of the Stokes problem
(1.1). A main problem arises from the fact that the space discrete approx-
imations are rarely divergence–free functions. Also, the finite dimensional
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spaces are very often nonconforming. Very recently the ideas of [2] were
appropriately extended to the Stokes case by Bernardi and Verfürth [4].

In the sequel we show that one can bypass the above technical problems
and derive a posteriori error estimates for finite element or finite volume
approximations to the Stokes system. In particular we address in a very
natural way the problem that arises from the fact that although u is diver-
gence free its approximation uh is in general not divergence free. Thus, the
error u − uh is not divergence free. Our approach allows the treatment of
nonconforming elements, the freedom of choosing various stationary (“ellip-
tic”) estimators, and leads to estimates of optimal order in various norms
by energy as well as duality techniques.

The main tool in our analysis is a Stokes reconstruction operator defined
below, Definition 1.1., as a solution operator of an appropriate stationary
Stokes problem. This definition is an appropriate extension of the elliptic
reconstruction operator in the Stokes case introduced by Makridakis and
Nochetto [22] for the a posteriori analysis of parabolic problems. Note that
a similar operator was used in the a priori error analysis of finite element
approximations of Navier–Stokes equation by Heywood and Rannacher [16,
Corollary 4.3] for different purposes. In Lemma 1.1 we show that the sta-
tionary approximation of the solution (U, P ) of the Stokes reconstruction
problem is (uh, ph), i.e. the approximations of the time dependent problem.
Then the derivation of the error estimates is reduced to deriving estimates
for e = U−u. Theorem 1.1 shows that e satisfies a continuous time depen-
dent Stokes problem, and in fact it is divergence free. Thus, pde techniques
can be applied to derive the final estimates in various norms. To focus
on the main ideas, in this paper we have chosen to consider the space dis-
crete case. The same techniques can be extended to fully discrete schemes
with backward Euler time discretization along the lines of [21]. The prob-
lem of showing a posteriori bounds when considering more appropriate time
discretization schemes for Stokes and Navier-Stokes equations requires new
ideas.

In the rest of this section we introduce the necessary notation and the
class of approximations that we will use in the sequel. Next we introduce the
Stokes reconstruction and discuss its main properties. In Section 2 we show a
posteriori error estimates based on the abstract setting introduced in Section
1. We derive estimates by energy as well as duality techniques. In Section
3 we apply the abstract theory to the classical nonconforming Crouzeix–
Raviart pair of lowest order. We show a posteriori estimates of optimal
order in L∞(L2) and L∞(H1) for the velocity error. In Section 4 we consider
finite volume schemes for discretizing (1.1). Still the approximations belong
to the Crouzeix–Raviart spaces. We appropriately modify the definition of
the Stokes reconstruction for the finite volume case and we show estimates
of optimal order in L∞(L2) and L∞(H1). Note the interesting fact that
the stationary finite volume approximation of the solution (U, P ) of the
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Stokes reconstruction problem is still (uh, ph) (the approximations of the
time dependent finite volume problem) in analogy to the finite element case.

In [4] optimal a posteriori error bounds in L2(H1) are derived for fully
discrete approximations of (1.1) based on backward Euler time discretization
combined with conforming finite elements for the space discretization. To
deal with the problem comming in the analysis from the fact that the finite
element spaces are not divergence free, a special stationary problem with
non zero divergence for the velocity is introduced, and, in addition, certain
mesh conditions are required.

1.1. Preliminaries - Main Definitions. Let H := (L2(Ω))d, be the
usual Lebesque space equipped with the inner product

〈f, g〉 =
∫

Ω
f(x)g(x)dx,

and V := (H1
0 (Ω))d, Π := {φ ∈ L2(Ω) :

∫
Ω φ(x)dx = 0}, and V? :=

(H−1(Ω))d be the dual of V. We denote the norms on H, Π, V and V∗ by
‖ · ‖H, ‖ · ‖Π, ‖ · ‖V and ‖ · ‖V∗ , respectively. Let a(·, ·) and b(·, ·) be the
bilinear forms defined as

(1.2) a(u,v) =
∫

Ω

d∑
i=1

∇ui∇vi dx u,v ∈ V ,

and

(1.3) b(u, q) = −
∫

Ω
(div u)q dx , u ∈ V, q ∈ Π .

We assume that f ∈ L2(0, T ;V?) and u0 ∈ H, so that (1.1) admits a unique
weak solution (u, p) satisfying

〈ut(t),v〉+ a(u(t),v) + b(v, p) = 〈f ,v〉 for all v ∈ V, a.e. t ∈ [0, T ]

b(u, q) = 0 for all q ∈ Π .

(1.4)

In the sequel we will assume that the the data of the problem will have suf-
ficient (additional) reqularity for our results to hold. For detailed regularity
requirements on the data see [26].

Define the closed subspace Z of V via

(1.5) Z = {v ∈ V : b(v, q) = 0 for all q ∈ Π}.
and the closed subspace J of H via

(1.6) J = {v ∈ H : b(v, q) = 0 for all q ∈ Π}.
Then, as usual, problem (1.4) is reduced to the following two problems:

find u ∈ Z such that

(1.7) 〈ut(t),v〉+ a(u(t),v) = 〈f ,v〉 for all v ∈ Z

and then find p ∈ Π such that

(1.8) b(v, p) = −〈ut(t),v〉 − a(u(t),v) + 〈f ,v〉 for all v ∈ V.
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It is known that the well–posedness of problem (1.7) follows from the coer-
civity of the bilinear form a(·, ·), namely

(1.9) α‖v‖2
V ≤ a(v,v) for all v ∈ V,

where α > 0, and the well–posedness of problem (1.8) follows from the
continuous inf–sup condition

(1.10) β‖p‖Π ≤ sup
w∈V

b(w, p)
‖w‖V

for all p ∈ Π,

where β > 0.
Now let (Vh,Πh) be an appropriate pair of finite dimensional spaces that

is chosen for the discretization of the stationary Stokes problem. Then
the space–discrete time dependent counterpart of (1.4) is: find (uh, ph) :
[0, T ] → Vh ×Πh such that

〈uh,t(t),ϕ〉+ a(uh(t),ϕ) + b(ϕ, ph) = 〈f ,ϕ〉 for all ϕ ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Πh.
(1.11)

Note that we do not assume that Vh ⊂ V, but just that a(·, ·) can be
extended to (Vh+V)×(Vh+V), and b(·, ·) can be extended to (Vh+V)×Π.
In addition for v ∈ Vh, with a slight abuse of notation, we still denote its
norm in Vh by ‖v‖V (understood in the elementwise sense).

Then, indeed, as in the continuous case, (1.11) is reduced to: find uh ∈ Zh

such that

(1.12) 〈uh,t(t),ϕ〉+ a(uh(t),ϕ) = 〈f ,ϕ〉 for all ϕ ∈ Zh,

and then find ph ∈ Πh such that

(1.13) b(uh, ph) = −〈uh,t(t),ϕ〉 − a(uh(t),ϕ) + 〈f ,ϕ〉 for all ϕ ∈ Vh

where Zh ⊂ Vh is the “discrete divergence free” subspace of Vh

Zh = {ϕ ∈ Vh : b(ϕ, q) = 0 for all q ∈ Πh} .

The uniqueness of the (uh, ph) is well–known [5, p. 248] and [15, p. 59]
under the following conditions:

(1.14) α∗‖v‖2
V ≤ a(v,v) for all v ∈ Vh,

where α∗ > 0, and

(1.15) 0 < β∗ := inf
q∈Πh

sup
v∈Vh

b(v, q)
‖v‖V‖q‖Π

.

We proceed now to define the a posteriori estimator functions for the
stationary problem. For g ∈ V?, let (w, q) ∈ V × Π be the unique solution
of the stationary Stokes equation

−∆w +∇q = g in Ω,
div w = 0 in Ω,

(1.16)
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or in weak form
a(w,v) + b(v, q) = 〈g,v〉 for all v ∈ V,

b(w, q̃) = 0 for all q̃ ∈ Π.
(1.17)

Let (wh, qh) ∈ Vh ×Πh be the corresponding finite element solution, i.e.

a(wh,ϕ) + b(ϕ, qh) = 〈g,ϕ〉 for all ϕ ∈ Vh,

b(wh, q̃) = 0 for all q̃ ∈ Πh.
(1.18)

We thus assume the availability of a posteriori estimators for this problem:

Assumption 1.1. Let (w, q) ∈ Z×Π and (wh, qh) ∈ Zh ×Πh be the exact
solution and its finite element approximation given in (1.17) and (1.18)
above. We assume that there exist a posteriori estimator functions E =
E((wh, qh),g;X), X = H,V,V∗, Epres = Epres((wh, qh),g; Π), which depend
on (wh, qh), g and the corresponding norm, such that

(1.19) ‖w −wh‖X ≤ E((wh, qh),g;X), X = H, V, V∗ ,

and

(1.20) ‖q − qh‖Π ≤ Epres((wh, qh),g; Π) .

Next we will define the Stokes reconstruction. Let ∆̃ : H2 ∩ Z ⊂ J → J
be the Stokes operator, namely the L2-projection of the Laplace operator
onto J [16]. We then introduce a discrete version of the Stokes operator
∆̃h : Zh → Zh by

(1.21) 〈∆̃hv,χ〉 = −a(v,χ) for all χ ∈ Zh.

We denote by fh the L2-projection of f onto Zh, i.e.

(1.22) 〈f ,χ〉 = 〈fh,χ〉 for all χ ∈ Zh.

Then we have, compare to [22]:

Definition 1.1. (Stokes Reconstruction) For fixed t ∈ [0, T ] let (U, P ) ∈
V ×Π be the solution of the stationary Stokes problem

a(U,v) + b(v, P ) = 〈gh(t),v〉 for all v ∈ V,

b(U, q) = 0 for all q ∈ Π,
(1.23)

where

(1.24) gh := −∆̃huh − fh + f .

We call (U, P ) = (U(t), P (t)) the Stokes Reconstruction of (uh(t), ph(t)).

As before, U ∈ Z and P ∈ Π are, respectively, the solutions of the
following problems

(1.25) a(U,v) = 〈gh,v〉 for all v ∈ Z,

and

(1.26) b(v, P ) = −a(U,v) + 〈gh,v〉 for all v ∈ V.
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Lemma 1.1. Assume that (U, P ) is the unique solution of the stationary
Stokes problem (1.23). Let (Uh, Ph) be the finite element solution of (1.23),
namely

a(Uh,ϕ) + b(ϕ, Ph) = 〈gh,ϕ〉 for all ϕ ∈ Vh,

b(Uh, q) = 0 for all q ∈ Πh.
(1.27)

Then

(1.28) Uh(t) = uh(t) and Ph(t) = ph(t) ,

where (uh, ph) is the solution of (1.11).

Proof. Let vh ∈ Zh; then b(vh, Ph) = 0 and a(Uh,vh) = 〈gh,vh〉. Now

〈gh,vh〉 = −〈∆̃huh,vh〉 − 〈fh,vh〉+ 〈f ,vh〉
= a(uh,vh),

(1.29)

i.e.,

(1.30) a(Uh − uh,vh) = 0 for all vh ∈ Zh.

Since Uh, uh ∈ Zh we get Uh(t) = uh(t). Also, according to (1.12) we
obtain

〈uh,t − ∆̃huh − fh,ϕ〉 = 0 for all ϕ ∈ Zh

so uh satisfies the relation in L2

(1.31) uh,t − ∆̃huh − fh = 0.

Further,

b(ϕ, ph)− b(ϕ, Ph) = −a(uh,ϕ)− 〈uh,t,ϕ〉+ 〈f ,ϕ〉 − [−a(Uh,ϕ) + 〈gh,ϕ〉]

= a(Uh − uh,ϕ)− 〈uh,t − ∆̃huh − fh,ϕ〉

(1.32)

for all ϕ ∈ Vh. According to (1.31) and the fact, as we proved above, that
Uh = uh we get

b(ϕ, ph − Ph) = 0 for all ϕ ∈ Vh.

Due to the discrete inf–sup assumption (1.15) we have that ph = Ph. So
we conclude that (uh, ph) ∈ Zh × Πh is the finite element solution of the
stationary Stokes equation whose exact solution is (U, P ). �

We have the following

Theorem 1.1. (Error equation) Let (U, P ) be the Stokes reconstruction and
(u, p) be the solution of the Stokes problem (1.1). If e := U−u and ε := P−p
then (e, ε) is the weak solution of the problem

et −∆e +∇ε = (U− uh)t

div e = 0 .
(1.33)

In addition U− uh satisfies the estimates

(1.34) ‖∂(j)
t (U− uh)‖X ≤ E((∂(j)

t uh, ∂
(j)
t ph), ∂(j)

t gh;X), j = 0, 1,
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X = H,V,V∗, where E is the a posteriori estimator function defined in
Assumption 1.1.

Proof. The pair (U, P ) is the unique solution of the stationary Stokes
problem

−∆U +∇P = gh in Ω,
div U = 0 in Ω.

According to (1.31) we have

Ut −∆U +∇P = (U− uh)t + f ,

and the assertion of this theorem is now obvious. �

2. Error estimates

2.1. Energy estimates. Next we derive a posteriori estimates by using
energy techniques to the auxiliary problem (1.33). We start with L∞(H)
and L2(V) error estimates for the velocity.

Theorem 2.1. (L∞(H) and L2(V)–norm error estimates) Assume that (u, p)
is the solution of the time dependent Stokes Problem (1.1) and (uh, ph) its
finite element approximation (1.11). Let (U, P ) be the solution of the sta-
tionary Stokes problem (1.17) and E be as defined in Assumption 1.1. Then
the following a posteriori error bounds hold for 0 < t ≤ T

‖(u−U)(t)‖2
H+

∫ t

0
‖(u−U)(s)‖2

Vds

≤ ‖u(0)−U(0)‖2
H +

∫ t

0
E((uh,t, ph,t),gh,t;V?)2ds .

In addition there holds

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H +

( ∫ t

0
E((uh,t, ph,t),gh,t;V?)2ds

)1/2

+ E((uh(0), ph(0)),gh(0);H) + E((uh(t), ph(t)),gh(t);H).

and( ∫ t

0
‖(u− uh)(s)‖2

Vds
)1/2

≤ ‖u0 − u0
h‖H +

( ∫ t

0
E((uh,t, ph,t),gh,t;V?)2ds

)1/2

+ E((uh(0), ph(0)),gh(0);H) +
( ∫ t

0
E((uh, ph),gh;V)2ds

)1/2
.

Proof. Using again (1.31) we have

〈uh,t − ∆̃huh − fh,v〉 = 0 for all v ∈ V.

According to (1.23) and the above relation we get

(2.1) 〈uh,t,v〉+ a(U,v) + b(v, P ) = 〈f ,v〉 for all v ∈ V.
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Let e := U− u and ε := P − p. By combining (1.4) and (2.1) and using
the definitions of u and U we have that (e, ε) ∈ V×Π is the solution of the
next nonstationary Stokes equation

〈et,v〉+ a(e,v) + b(v, ε) =〈(U− uh)t,v〉 for all v ∈ V,

〈div e, q〉 =0 for all q ∈ Π,
(2.2)

or, e ∈ Z is the solution of

(2.3) 〈et,v〉+ a(e,v) = 〈(U− uh)t,v〉 for all v ∈ Z,

and then ε ∈ Π is the solution of

(2.4) b(v, ε) = −〈et,v〉 − a(e,v) + 〈(U− uh)t,v〉 for all v ∈ V.

Now, since e ∈ Z, we can choose v = e in (2.3) to get

‖(u−U)(t)‖2
H +

∫ t

0
‖(u−U)(s)‖2

Vds

≤ ‖u(0)−U(0)‖2
H +

∫ t

0
‖(uh,t −Ut)(s)‖2

V∗ds .

Assumption 1.1 implies that

(2.5) ‖uh,t −Ut‖V? ≤ E((uh,t, ph,t),gh,t;V?) ,

which in turn leads to the first assertion of Theorem 2.1. To show the second
one it suffices to note that Assumption 1.1 yields

(2.6) ‖(uh −U)(t)‖H ≤ E((uh(t), ph(t)),gh(t);H) for all 0 ≤ t ≤ T ,

which, together with

‖u(0)−U(0)‖H ≤ ‖u(0)− uh(0)‖H + ‖uh(0)−U(0)‖H
≤ ‖u0 − u0

h‖H + E((uh(0), ph(0)),gh(0);H),
(2.7)

concludes the proof. �

Next we show estimates in L∞(V) for the velocity error.

Theorem 2.2. (L∞(V)–norm error estimates) Under the assumptions of
Theorem 2.1, the following a posteriori error bounds hold for 0 < t ≤ T∫ t

0
‖(u−U)t(s)‖2

H ds+ ‖∇(u−U)(t)‖2
H

≤ ‖∇(u−U)(0)‖2
H +

∫ t

0
E((uh,t, ph,t),gh,t;H)2ds

and

‖∇(u− uh)(t)‖H ≤ ‖u0 − u0
h‖V +

( ∫ t

0
E((uh,t, ph,t),gh,t;H)2ds

)1/2

+ E((uh(0), ph(0)),gh(0);V) + E((uh(t), ph(t)),gh(t);V).
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Proof. The first assertion of theorem follows by selecting v = et in (2.3).
Also, in view of Assumption 1.1 we get

(2.8) ‖(uh −U)(t)‖V ≤ E((uh(t), ph(t)),gh(t);V) for all 0 ≤ t ≤ T ,

which, together with

‖∇(u−U)(0)‖H ≤ ‖u0 − u0
h‖V + ‖(uh −U)(0)‖V

≤ ‖u0 − u0
h‖V + E((uh(0), ph(0)),gh(0);V).

prove the second assertion of this theorem. �

Remark 2.1. Another way to prove the H1–norm error estimate is as fol-
lows: Obviously ∆̃e 6∈ Z, but after integrating by parts in (2.3), one can
justify setting v = ∆̃e. Then, noting that 〈et, ∆̃e〉 = 〈et,∆e〉 = −〈∇et,∇e〉,
[16], we find

max
0≤t≤T

‖∇(u−U)(t)‖2
H +

∫ T

0
‖∆̃(u−U)(s)‖2

Hds

≤ ‖∇(u−U)(0)‖2
H +

∫ T

0
E((uh,t, ph,t),gh,t;H)2ds .

Estimating the pressure error for the time dependent problem is a delicate
issue. Unlike the stationary problem where ‖p − ph‖Π behaves like ‖u −
uh‖V, a corresponding estimate for the pressure error in the time dependent
problem is not clear even in the a priori analysis. In our approach this
problem is reduced to a “balanced” estimate involving ‖p− P‖Π and ‖u−
U‖V in terms of the right hand side of the pde (1.33). It turns out that it
is not clear how this can be done with simple energy arguments. We refer
to the works of Solonnikov, and Koch and Solonnikov [25, 18, 19] where
fine stability issues for the time dependent Stokes problem are addressed.
Note also that estimates of the pressure error in H−1(L2) can be derived
by adopting arguments of Bernardi and Raugel [3] in estimating (1.33).
Below we estimate maxt∈[0,T ] ‖p(t)−P (t)‖Π at the expense of an extra time
derivative in the estimator function compared to the estimate in Theorem
2.2 for maxt∈[0,T ] ‖u−U‖V. Nevertheless, the order of the estimator is the
right one.

Theorem 2.3. (Pressure error estimate) Under the assumptions of Theorem
2.2 we have

β2‖p− P‖Π
2 ≤ C

[
‖(u−U)t(0)‖2

H + ‖∇(u−U)(0)‖2
H

+
∫ t

0
E((uh,tt, ph,tt),gh,tt;H)2ds

+
∫ t

0
E((uh,t, ph,t),gh,t;H)2ds+ E((uh,t, ph,t),gh,t;V∗)2

]
.
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and

β‖p− ph‖Π ≤ C
[
‖(u−U)t(0)‖H + ‖∇(u−U)(0)‖H

+
( ∫ t

0
E((uh,tt, ph,tt),gh,tt;H)2ds

+
∫ t

0
E((uh,t, ph,t),gh,t;H)2ds

)1/2
+ E((uh,t, ph,t),gh,t;V∗)

]
+ βEpres((uh, ph),gh; Π) .

Proof. According to the discrete inf–sup condition (1.15) and Poincare’s
inequality, one finds

β‖ε‖Π ≤ sup
v∈V

b(v, ε)
‖v‖V

= sup
v∈V

−〈et,v〉 − a(e,v) + 〈(U− uh)t,v〉
‖v‖V

≤ c (‖et‖H + ‖∇e‖H + ‖(U− uh)t‖V∗)
(2.9)

Differentiating (2.3) with respect to t we get

(2.10) 〈ett,v〉+ a(et,v) = 〈(U− uh)tt,v〉 for all v ∈ Z.

Now, setting v = et in the last equation and integrating with respect to t
we obtain
(2.11)

‖(u−U)t(t)‖2
H+

∫ t

0
‖∇(u−U)t(s)‖2

Hds ≤ ‖(u−U)t(0)‖2
H+

∫ t

0
‖(U−uh)tt(s)‖2

H ds .

According to (2.9), (2.11), the Assumption 1.1 and the previous error esti-
mates for velocity, we derive the result of this theorem.

�

2.2. Estimates by parabolic duality. We briefly discuss now how one
can apply our ideas to derive estimates using parabolic duality, [27, 14].
Thus consider the backward parabolic Stokes problem: Fix t? ∈ (0, T ] and
let (z, s) ∈ Z×Π be the solution of the backward problem

zt + ∆z−∇s = 0 in Ω× (0, t?),

div z = 0 in Ω× (0, t?),

z = 0 on ∂Ω× (0, t?),

z(·, t?) = e(·, t?) in Ω,

(2.12)

where e = U− u. Then for any τ, 0 < τ < t?, there holds

max
t∈[0,t?]

‖z(t)‖H ≤ ‖e(t?)‖H ,∫ t?−τ

0
‖zt‖Hds ≤

1
2
Lτ ‖e(t?)‖H ,

(2.13)
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where Lτ = (log( t?
τ ))1/2. This bound follows by entirely similar arguments

as in [27, Lemma 12.5], working with the one field equation of the Stokes
problem

(2.14) zt + ∆̃z = 0 in Ω× (0, t?) .

Theorem 2.4. Assume that (u, p) is the solution of the time dependent
Stokes problem (1.1) and (uh, ph) is its finite element approximation (1.11).
Let (U, P ) be the solution of the stationary Stokes problem (1.17). Then
the following a posteriori error bound holds: for 0 < t? ≤ T and any τ,
0 < τ < t? we have

‖(u− uh)(t?)‖H ≤
(
1+

1
2
Lτ

)
max

0≤t≤t?
‖(U− uh)(t)‖H

+
∫ t?

t?−τ
‖(U− uh)t‖H dt+ ‖(u− uh)(0)‖H ,

where Lτ = log( t?
τ )1/2.

Proof. The proof of this estimate is based on the formula obtained by a
simple integration by parts
(2.15)∫ t?

0
〈vt, z〉+ a(v, z) + 〈∇s,v〉 dt+ 〈v(0), z(0)〉 = 〈v(t?), z(t?)〉, for v ∈ V .

In particular for v ∈ Z this relation reduces to

(2.16)
∫ t?

0
〈vt, z〉+ a(v, z) dt+ 〈v(0), z(0)〉 = 〈v(t?), z(t?)〉, for v ∈ Z .

Thus since e ∈ Z, (1.33) yields

‖e(t?)‖2
H = 〈e(t?), z(t?)〉

=
∫ t?

0
〈et, z〉+ a(e, z) dt+ 〈e(0), z(0)〉

=
∫ t?

t?−τ
〈(U− uh)t, z〉 dt+

∫ t?−τ

0
〈(U− uh)t, z〉 dt+ 〈e(0), z(0)〉

=
∫ t?

t?−τ
〈(U− uh)t, z〉 dt+ 〈(U− uh)(t? − τ), z(t? − τ)〉

− 〈(U− uh)(0), z(0)〉 −
∫ t?−τ

0
〈(U− uh), zt〉 dt+ 〈e(0), z(0)〉.

Using (2.13) we obtain

‖e(t?)‖2
H ≤

[ ∫ t?

t?−τ
‖(U− uh)t‖H dt+ (1 +

1
2
)Lτ max

0≤t≤t?−τ
‖(U− uh)(t)‖H

+ ‖(u− uh)(0)‖H
]
‖e(t?)‖H.

�
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It is interesting to note that the term∫ t?

t?−τ
‖(U− uh)t‖H dt

appearing in the above estimate can be bounded by maxt?−τ≤t≤t? ‖(U −
uh)(t)‖H in the fully discrete case, provided that τ is of the order of the
time step. A similar phenomenon appears, of course, in the standard proofs
by duality in the time-discrete and fully discrete cases, cf. [27, 14]. We
refer to the forthcoming work [20] where the fully discrete case for parabolic
problems is considered. Thus, assuming for the time being that this term
is not present in our case also, ignoring the error of the initial condition
and recalling Theorem 1.1 we see that the above arguments would lead to a
bound of the form

‖(u− uh)(t?)‖H ≤
(
2 +

1
2
Lτ

)
max

0≤t≤t?
E((uh, ph),gh;H) .

3. Application: Crouzeix–Raviart finite element discretization

In this section we will apply the a posteriori estimates in the case of
the classical two dimensional Crouzeix–Raviart spaces of the lowest order
Vh × Πh, [12]. We will need some further notation: For D ⊂ Ω and s ≥ 0,
integer, we denote by Hs(D) the usual Sobolev spaces, and by Hs(D) their
vector counterparts. Their norms and seminorms are denoted by ‖ · ‖s,D

and | · |s,D respectively. We will denote the L2 norm of vector or scalar
functions, simply by ‖ · ‖. For a piecewise regular vector function v we define
the discrete gradient as the L2–matrix ∇hv|K = ∇(v|K), K ∈ Th.

We consider a family of shape–regular triangulations {Th}0<h<1 of Ω, i.e.,
any two triangles in Th share at most a vertex or an edge, where h is the
maximum diameter of the triangles of Th [5]. With Eh(K) we denote the
set of the edges of K ∈ Th. Also, let Ein

h be the edges of Th that are not
part of ∂Ω, and define Ein

h (K) in a similar way. In, addition hK denotes
the diameter of the triangle K, |K| its area, and he the length of an edge
e ∈ Eh(K).

Next, let Vh be the Crouzeix–Raviart nonconforming finite element space,
cf. [12], associated with Th and Vh its vector counterpart. Recall that Vh

consists of piecewise linear functions that are continuous at the midpoints
of the elements of the triangulation Th. The pressure space is just

Πh = {ψ ∈ Π = L2
0 : ψ|K ∈ P0, ∀K ∈ Th}.

The finite element approximation (uh, ph) : [0, T ] → Vh × Πh of semidis-
crete problem is defined by (1.11). It is well known, cf., e.g., [12, §6], [26,
Proposition 4.13] that the bilinear forms a(·, ·) and b(·, ·), defined in the el-
ementwise sence, satisfy (1.14) and (1.15). The analysis of a priori and a
posteriori error estimation of finite element approximations to the stationary
Stokes equations has been considered in, e.g., [12, 13, 17, 28, 15].



A POSTERIORI ESTIMATES AND STOKES RECONSTRUCTION 13

We will show how the abstract results of the previous sections can be
applied when we consider residual type estimators for the Crouzeix–Raviart
space discretization. We will adapt the estimators of [13] and note that other
alternatives are possible, [28, 1]. To this end we let σ = U−uh, ξ = P − ph

and recall that Lemma 1.1 implies that (uh, ph) is the stationary Stokes
approximation of a problem with exact solution (U, P ). Thus introducing
the classical conforming space

(3.1) Xh = Vh ∩H1
0(Ω)

we have the orthogonality relation

(3.2) a(σ,ϕ) + b(ϕ, ξ) = 0 ∀ϕ ∈ Xh.

Then as in [13] we decompose the velocity error ∇hσ as ∇hσ = ∇r− qI +
curl s, where q ∈ L2

0(Ω), r ∈ H1
0(Ω) with div r = 0 and s ∈ H1(Ω) and

(3.3) |r|1 + |s|1 ≤ C ‖∇he‖.

Next for two matrices B and D we denote their inner product by B : D =∑2
i,j=1BijDij . Then since

∫
Ω∇hσ : curlψ = 0, ∀ψ ∈ Xh, we finally get,

[13],

‖∇hσ‖2 =
∫

Ω
(∇hσ − ξI) : ∇(r− χ)

+
∫

Ω
∇hσ : curl(s−ψ), ∀χ, ψ ∈ Xh.

We thus have

‖∇hσ‖2 =
∑
K

∫
K

gh · (r− χ)

−
∫

∂K
(∇huh − phI)n · (r− χ)−

∫
∂K

∇huhτ · (s−ψ),
(3.4)

for any χ, ψ ∈ Xh. Here τ = (−n2, n1)t is the tangent vector and I is the
identity matrix. Note in addition the elementwise relation, (1.24),

gh|K = −∆̃huh − fh + f = −uh,t + f

= − (uh,t −∆uh +∇ph − f) =: −RK .
(3.5)

Obviously ∆uh = 0,∇ph = 0 in each element. Here uh,t − ∆uh + ∇ph −
f = RK denotes the inner residual. Note that the argument above works
with higher polynomial degrees too. In that case the inner residual will
appear in the estimator since in (3.4) above instead of gh we would have
gh + ∆uh −∇ph. Then still gh + ∆uh −∇ph = −RK . We proceed now to
define the estimators. To this end, we first use the standard notation to
define

[[(∇uh − phI)ne]]e = (∇uh|K− − ph|K−I)ne − (∇uh|K+ − ph|K+I)ne,
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and

[[∇uh τ e]]e = (∇uh|K−)τ e − (∇uh|K+)τ e.

For all edges e ∈ Eh we let

Je,n =

{
[[(∇uh − phI)ne]]e, if e ∈ Ein

h ,

0, otherwise,
Je,τ =

{
[[∇uh τ e]]e, if e ∈ Ein

h ,

2∇uhτ e, otherwise.

We thus define the local error estimators η1,K(uh), K ∈ Th, by

(3.6) η1,K(uh)2 = h2
K ‖RK‖2

0,K +
1
2

∑
e∈Eh(K)

he

(
‖Je,n‖2

0,e + ‖Je,τ‖2
0,e),

where the inner residual RK = uh,t − ∆uh + ∇ph − f . At this point it is
useful to note that the term involving Je,τ can be replaced by the jump of
uh. Indeed, an elementary calculation shows that, [17],

(3.7) ‖[[uh]]e‖2
0,e =

h2
e

12
‖Je,τ‖2

0,e.

In the sequel, for comparison’s sake we will use estimators of the form (3.6).
The estimator η1(uh) is defined by assembling the local estimators:

(3.8) η1(uh) =
(∑

K

η1,K(uh)2
)1/2

.

The proof is completed by using standard arguments: Let Ih be a Clement–
type interpolant onto Xh which is locally quasi-stable in H1 [24, 5]. We
choose χ = Ihr, ψ = Ihs in (3.4) and use the approximation properties of
the interpolant to conclude that:

Lemma 3.1. The following estimate holds:

(3.9) E((uh(t), ph(t)),gh(t);V) ≤ C η1 (uh(t) ) .

Next we need an estimate for E((uh,t(t), ph,t(t)),gh,t(t);H).
It is standard to consider the dual problem: Find (z, s) ∈ (H2(Ω) ∩

H1
0(Ω)×H1(Ω) ∩ L2

0(Ω)) such that

−∆z−∇s = σt in Ω,

div z = 0, in Ω,(3.10)
z = 0, on ∂Ω.

Under known conditions on Ω the solution (z, s) satisfies the elliptic regu-
larity estimate

(3.11) ‖z‖2 + ‖s‖1 ≤ C‖σt‖.
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Multiplying the first equation in (3.10) by σt and using integration by parts
and the second equation in (3.10), we obtain

‖σt‖2 =
∑
K

{∫
K

(
∇z : ∇(Ut − uh,t) + s div(Ut − uh,t)− (Pt − ph,t) div z

)
+

∫
∂K

∇zn · uh,t +
∫

∂K
sn · uh,t

}
(3.12)

Also, differentiating (3.2) with respect to t, we have

a(σt,ϕ) + b(ϕ, ξt) = 0, ∀ϕ ∈ Xh .

In addition, b(Ut − uh,t, ψ) = 0, ψ ∈ Πh. Therefore

‖σt‖2 =
∑
K

{∫
K

(
−∆σt +∇ξt

)
· (z− χ)

+
∫

K

(
(s− ψ) div(σt) +

∫
∂K

(
∇(σt)n− ξt n

)
· (z− χ)

+
∫

∂K

(
∇zn · uh,t + sn · uh,t

)}
.

Since in each element K we have gh,t = −∂tRK = −RK,t we obtain

‖σt‖2 =
∑
K

{∫
K

(−RK,t · (z− χ)− (s− ψ) div uh,t)

+
∫

∂K

(
∇uh,t n− ph,t n

)
· (z− χ) +

∫
∂K

(
∇zn + sn

)
· uh,t

}
,

(3.13)

for any χ ∈ Xh and ψ ∈ Πh.
Define now the local error estimators η0,K by

η0,K(uh,t)2 = h4
K‖RK,t‖2

0,K + h2
K ‖div uh,t‖2

0,K

+
1
2

∑
e∈Ein

h (K)

(
h3

e ‖∂tJe,n‖2
0,e + h3

e ‖∂tJe,τ‖2
0,e

)
.

The L2 spatial estimator is then

(3.14) η0(uh,t ) =
(∑

K

η0,K(uh,t)2
)1/2

.

To conclude the estimate, one can show as in [17] that∑
K

∑
e∈Eh(K)

∫
e

(
∇zn + sn

)
· uh,t ≤C

( ∑
e∈Ein

h

he ‖[[uh,t]]e‖2
0,e

)1/2

‖σt‖

≤C
( ∑

e∈Ein
h

h3
e ‖∂tJe,τ‖2

0,e

)1/2

‖σt‖.
(3.15)
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Here we used the fact that
∫
e[[uh,t]]e = 0, the approximation properties of

the L2(e) projection onto P0(e) and (3.11).
Then, choosing χ as the standard nodal interpolant of z and ψ = Ihs we

finally conclude that

Lemma 3.2. The following estimate holds:

(3.16) E((uh,t(t), ph,t(t)),gh,t(t);H) ≤ C η1 (uh,t(t) ) .

Further, assuming that (3.11) holds we have

(3.17) E((uh,t(t), ph,t(t)),gh,t(t);H) ≤ C η0 (uh,t(t) ) .

We can now apply Theorems 2.1 and 2.2 to obtain H1 estimates in our
case.

Theorem 3.1. (Residual L2(H1) and L∞(H1)–norm error estimates) Assume
that (u, p) is the solution of the time dependent Stokes Problem (1.1) and
(uh, ph) is the Crouzeix–Raviart finite element approximation (1.11). Then
the following a posteriori bounds hold for 0 < t ≤ T( ∫ t

0
‖(u− uh)(s)‖2

Vds
)1/2

≤ ‖u0 − u0
h‖H + C

( ∫ t

0
η1((uh,t(s) )2ds

)1/2

+ Cη1((uh(0) ) + C
( ∫ t

0
η1((uh(s) )2ds

)1/2
,

and

‖∇(u− uh)(t)‖H ≤ ‖u0 − u0
h‖V + C

( ∫ t

0
η1((uh,t(s) )2ds

)1/2

+ Cη1((uh(0) ) + Cη1(uh(t) ).

Remark 3.3. In the above estimates we did not assume the elliptic regular-
ity estimate (3.11) and we have used the (crude) first bound of Lemma 3.2.
Still the estimates in Theorem 3.1 are of optimal order. In the case of e.g.
convex polygonal domains where (3.11) holds the estimator η1((uh,t(s) ) in
these bounds should be replaced by η0((uh,t(s) ).

For the L∞(L2) estimate note that due to the fact that we use the
Crouzeix–Raviart elements of lowest order the term E((uh,t, ph,t),gh,t;V?)
in Theorem 2.1 is simply bounded by E((uh,t, ph,t),gh,t;H).

In the estimate of the next theorem, as in the elliptic case, to gain a power
of h in the order we have to use the elliptic regularity bound (3.11). Due
to the abstract form of our estimators in Theorem 2.1 other finer choices
can be made when (3.11) is not valid. To address this issue, detailed work
related to the specific form of possible singularities of the exact solution is
required. This case will not be considered in this paper.

We thus have

Theorem 3.2. (Residual L∞(L2)–norm error estimates). Assume that (u, p)
is the solution of the time dependent Stokes Problem (1.1) and (uh, ph) is
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the Crouzeix–Raviart finite element approximation (1.11). Assume further
that (3.11) holds. Then the following a posteriori bound holds for 0 < t ≤ T

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H + C

( ∫ t

0
η0((uh,t(s) )2ds

)1/2

+ Cη0(uh(0) ) + Cη0(uh(t) ).

4. Application: A finite volume scheme

Finite volume methods rely on local conservation properties of the dif-
ferential equation. Thus, integrating (1.1) over a region b ⊂ Ω and using
Green’s formula, we obtain

(4.1)
∫

b
ut −

∫
∂b
∇un +

∫
∂b
pn =

∫
b
f .

In addition (1.1) gives
∫
O divu = 0, for appropriate domains O. The finite

volume scheme seeks approximations in the Crouzeix–Raviart couple Vh ×
Πh used in the previous section satisfying a local conservation property (4.1)
over the control volumes. The number of these control volumes is equal to
the dimension of Vh. To fix notation we consider the following construction.
Let zK be an inner point of K ∈ Th. We connect zK with line segments to
the vertices ofK, thus partitioningK into three subtrianglesKe, e ∈ Eh(K).
Then with each side e ∈ Eh we associate a quadrilateral be, which consists
of the union of the subregions Ke.

The corresponding finite volume method for the time dependent Stokes
problem is: Seek (uh, ph) : [0, T ] → Vh ×Πh satisfying∫

be

uh,t −
∫

∂be

∇uh n +
∫

∂be

ph n =
∫

be

f , ∀ e ∈ Ein
h ,(4.2) ∫

K
div uh = 0, ∀K ∈ Th.(4.3)

We refer to the works [10, 11] for a priori and to [8] for a posteriori estimates
for finite volume methods for the stationary Stokes problem.

It is important for the sequel to note that the finite volume scheme admits
a variational formulation similar to the one of finite element case, [8, 6, 7].

Lemma 4.1. There exists a unique solution (uh, ph) ∈ Vh×Πh of the finite
volume method (4.2)–(4.3) which satisfies

〈uh,t,Λhϕ〉+ a(uh,ϕ) + b(ϕ, ph) = 〈f ,Λhϕ〉, ∀ϕ ∈ Vh,

b(uh, ψ) = 0, ∀ψ ∈ Πh,
(4.4)

where the operator Λh : C(Ω)2 + Vh → Vh is defined by

(4.5) Λhv =
∑

e∈Ein
h

v(me)χbe ,
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χbe being the characteristic function of be and me the midpoint of the edge
e.

For future reference we list the main properties of the operator Λh [8, 6]

‖ϕ−Λhϕ‖2
0,K =

∑
e∈Eh(K)

‖ϕ−Λhϕ‖2
0,Ke

≤ Ch2
K |ϕ|

2
1,K , ∀ϕ ∈ Vh,(4.6)

∫
e
Λhϕ =

∫
e
ϕ, ∀ϕ ∈ Vh, ∀ e ∈ Eh.(4.7)

We now introduce two operators that will be useful in the sequel; Lh :
L2(Ω)2 → Vh and L̃h : L2(Ω)2 → Zh by

〈Lhv,ϕ〉 = 〈v,Λhϕ〉 ∀ϕ ∈ Vh,

〈L̃hv,ω〉 = 〈v,Λhω〉 ∀ω ∈ Zh .
(4.8)

Obviously Lh and L̃h are well defined. In view of the above definitions
and Lemma 4.1 we conclude that the solution of the finite volume scheme
satisfies

(4.9) L̃huh,t − ∆̃huh − L̃hf = 0.

The derivation of the a posteriori estimates follows the lines of the abstract
analysis in Section 1, but certain modifications are required. We start by
redefining the Stokes reconstruction. Let (U, P ) ∈ V×Π be the solution of
the stationary Stokes problem

a(U,v) + b(v, P ) = 〈gh,v〉 for all v ∈ V,

b(U, q) = 0 for all q ∈ Π,
(4.10)

where

(4.11) gh := −∆̃huh − L̃hf + f + L̃huh,t − uh,t.

According to the definition of gh and (4.9) we get

(4.12) gh = f − uh,t.

One of the reasons motivating the definition of gh is that in view of (4.12)
the error equation for e = U−u and ε = P −p is the one in Theorem (1.1):

et −∆e +∇ε = (U− uh)t

div e = 0 .
(4.13)

Thus estimating e = U− u and ε = P − p is done as in Section 2 provided
that we know how to handle U− uh and (U− uh)t. In the remaining part
of this section we show that although Lemma 1.1 is no longer valid as such,
U − uh satisfies the necessary orthogonality relations needed to estimate
U − uh and (U − uh)t by applying the stationary a posteriori theory for
the finite volume scheme [8]. In fact it is interesting that (uh, ph) is the
stationary finite volume solution to problem (4.10):
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Lemma 4.2. Assume that (U, P ) is the unique solution of the stationary
Stokes problem (4.10) and (Uh, Ph) its finite volume solution, namely

a(Uh,ϕ) + b(ϕ, Ph) = 〈gh,Λhϕ〉 for all ϕ ∈ Vh,

b(Uh, q) = 0 for all q ∈ Πh.
(4.14)

Then

(4.15) Uh(t) = uh(t) and Ph(t) = ph(t),

where (uh, ph) is the solution of (4.4).

Proof. Let ϕ ∈ Zh, then b(ϕ, Ph) = 0 and a(Uh,ϕ) = 〈gh,Λhϕ〉. Now, in
view of (4.4), (4.12) we have

a(Uh,ϕ) = 〈gh,Λhϕ〉 = 〈f − uh,t,Λhϕ〉 = a(uh,ϕ),(4.16)

i.e.,

(4.17) a(Uh − uh,ϕ) = 0 for all ϕ ∈ Zh.

Since Uh, uh ∈ Zh, we get Uh(t) = uh(t). Subtracting (4.14) from (4.4)

b(ϕ, ph)− b(ϕ, Ph) = −a(uh,ϕ)− 〈uh,t,Λhϕ〉+ 〈f ,Λhϕ〉−
− [−a(Uh,ϕ) + 〈gh,Λhϕ〉]
= a(Uh − uh,ϕ)− 〈uh,t − f + gh,Λhϕ〉,

(4.18)

for all ϕ ∈ Vh. According to (4.12) and the fact that Uh = uh we get

b(ϕ, ph − Ph) = 0 for all ϕ ∈ Vh.

Due to the discrete inf–sup assumption (1.15) we obtain ph = Ph. Therefore,
(uh, ph) ∈ Zh × Πh is the finite volume solution of the stationary Stokes
equation whose exact solution is (U, P ). �

We now turn to the estimate U − uh. As in the previous section, σ =
U− uh, ξ = P − ph. Note that Lemma 4.1 implies that (uh, ph) satisfies

(4.19) a(uh,ϕ) + b(ϕ, ph) = 〈Lhf ,ϕ〉 − 〈Lhuh,t,ϕ〉 ∀ϕ ∈ Vh.

Therefore in view of the definition of (U, P ) and of (4.12) we have the
orthogonality relation on the conforming space Xh

(4.20) a(σ,ϕ) + b(ϕ, ξ) = 〈f −Lhf ,ϕ〉 − 〈uh,t −Lhuh,t,ϕ〉 ∀ϕ ∈ Xh.

The proof rests on applying again the argument in [13] as in the previous
section and taking into account the additional error term resulting from the
finite volume discretization. Thus, with the same notation as in Section
3, we use the decomposition ∇hσ = ∇r − qI + curl s, where q ∈ L2

0(Ω),
r ∈ H1

0(Ω) with div r = 0 and s ∈ H1(Ω). Thus, cf. Section 3, using (4.20)
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and the definition of Lh we finally get

‖∇hσ‖2 =
∑
K

∫
K

gh · (r− χ) +
∫

K
(f − uh,t) · (χ−Λhχ)

−
∫

∂K
(∇huh − phI)n · (r− χ)−

∫
∂K

∇huhτ · (s−ψ),

(4.21)

for any χ, ψ ∈ Xh. Still we denote by RK the inner elementwise residual
RK = uh,t−∆uh +∇ph− f . Then gh|K = −uh,t + f = −RK . Consider now
the local error estimators η1,K(uh), defined in (3.6) and the global estimator
η1(uh) defined by (3.8). Then we choose χ = Ihr, ψ = Ihs in (4.21), Ih being
a Clement-type interpolant onto Xh. Using the approximation properties of
the interpolant and of the operator Λh, (4.6), we conclude as in [8] that:

Lemma 4.3. The following estimate holds:

(4.22) ‖U− uh‖V ≤ C η1 (uh(t) ) .

Next we will provide an a posteriori estimator for the L2-norm error of the
velocity. From the a priori analysis of finite volume methods, it is known, [6],
that in order to get O(h2) convergence in L2, zK is has to be chosen as the
barycenter of K. Therefore in the sequel we assume that in the construction
of the control volumes be, the point zK is chosen to be the barycenter of K.
In this case we will have

(4.23)
∫

K
(ϕ−Λhϕ) = 0, ∀ϕ ∈ Vh.

We consider again the dual problem (3.10). Then (3.12) is still valid. In ad-
dition, differentiating (4.20) with respect to t, we obtain, since all operators
commute with time differentiation,

a(σt,ϕ) + b(ϕ, ξt) = 〈ft −Lhft,ϕ〉 − 〈uh,tt −Lhuh,tt,ϕ〉 ∀ϕ ∈ Xh.

In the next equation we also use the fact that b(Ut − uh,t, ψ) = 0, ψ ∈ Πh.
Therefore

‖σt‖2 =
∑
K

{∫
K

(
−∆σt +∇ξt

)
· (z− χ)

+
∫

K

(
(s− ψ) div(σt) +

∫
∂K

(
∇(σt)n− ξt n

)
· (z− χ)

+
∫

K
(ft − uh,tt) · (χ−Λhϕ)

)
+

∫
∂K

(
∇zn · uh,t + sn · uh,t

)}
.
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Using the fact that gh,t = −∂tRK = −RK,t and (4.23), we obtain

‖σt‖2 =
∑
K

{∫
K

(−RK,t · (z− χ)− (s− ψ) div uh,t)

−
∫

K
(RK,t −RK,t) · (χ−Λhχ)

)
+

∫
∂K

(
∇uh,t n− ph,t n

)
· (z− χ) +

∫
∂K

(
∇zn + sn

)
· uh,t

}
,

(4.24)

for any χ ∈ Xh and ψ ∈ Πh. Here RK,t denotes the average of RK,t over K.
The local error estimators η̃0,K in the finite volume case are slightly different
than the corresponding in the finite element case:

η̃0,K(uh,t)2 = h4
K‖RK,t‖2

0,K + h2
K ‖div uh,t‖2

0,K

+ h2
K‖RK,t −RK,t‖

2

0,K

+
1
2

∑
e∈Ein

h (K)

(
h3

e ‖∂tJe,n‖2
0,e + h3

e ‖∂tJe,τ‖2
0,e

)
.

The L2 estimator is defined by

(4.25) η̃0(uh,t ) =
(∑

K

η̃0,K(uh,t)2
)1/2

.

Then, we choose χ as the standard nodal interpolant of z, denoted by Ih,N z

and ψ = Ihs. Following [8] we observe∫
K

(
RK,t −RK,t) · (Ih,N z−ΛhIh,N z)

)
≤ ‖RK,t −RK,t‖0,K ‖Ih,N z−ΛhĨhz‖0,K

≤ C|K|1/2‖RK,t −RK,t‖0,K |Ih,N z|1,K

≤ C|K|1/2‖RK,t −RK,t‖0,K ‖z‖2,K .

The proof is thus complete.
We have thus proved

Lemma 4.4. The following estimate holds:

(4.26) ‖uh,t −Ut‖H ≤ C η1 (uh,t(t) ) .

Further, assuming that (3.11) and (4.23) hold we have

(4.27) ‖uh,t −Ut‖H ≤ C η̃0 (uh,t(t) ) .

We can now apply Theorem 2.2 to obtain H1 estimates in our case.

Theorem 4.1. (Residual L2(H1) and L∞(H1)–norm error estimates) Assume
that (u, p) is the solution of the time dependent Stokes Problem (1.1) and
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(uh, ph) is the finite volume approximation (4.2), (4.3). Then the following
a posteriori bounds hold for 0 < t ≤ T

‖∇(u− uh)(t)‖H ≤ ‖u0 − u0
h‖V + C

( ∫ t

0
η1((uh,t(s) )2ds

)1/2

+ Cη1((uh(0) ) + Cη1(uh(t) ).

and( ∫ t

0
‖(u− uh)(s)‖2

Vds
)1/2

≤ ‖u0 − u0
h‖H + C

( ∫ t

0
η1((uh,t(s) )2ds

)1/2

+ Cη1((uh(0) ) + C
( ∫ t

0
η1((uh(s) )2ds

)1/2
.

Remark 4.5. In the case where (3.11) and (4.23) hold the estimator η1((uh,t(s) )
in these bounds should be replaced by η̃0((uh,t(s) ).

Further we prove the following L∞(L2) a posteriori estimate. The same
remarks preceding Theorem 3.2 apply also here regarding the assumption of
the elliptic regularity bound (3.11).

Theorem 4.2. (Residual L2–norm error estimates) Assume that (u, p) is the
solution of the time dependent Stokes Problem (1.1) and (uh, ph) is the finite
volume approximation (4.2), (4.3). Assume further that (3.11) and (4.23)
hold. Then the following a posteriori bound holds for 0 < t ≤ T

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H + C

( ∫ t

0
η̃0((uh,t(s) )2ds

)1/2

+ Cη̃0(uh(0) ) + Cη̃0(uh(t) ).
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