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Summary. We introduce two classes of monotone finite volume schemes
for Hamilton-Jacobi equations. The corresponding approximating functions
are piecewise linear defined on a mesh consisting of triangles. The schemes
are shown to converge to the viscosity solution of the Hamilton—Jacobi
equation.
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0. Introduction

In this paper we consider finite volume schemes approximating the viscosity
solution of the Hamilton—Jacobi equation

us + H(Du) =0 inRY x (0, 00),

1) u=uy onRY x {0},

where the Hamiltonial € C%!(RY), the space of Lipschitz continuous
functions inR”, andug € BUC(RY), the space of bounded and uniformly
continuous functions oR”.

A few comments about viscosity solutions are in order here. The class of
viscosity solutions, which was introduced by Crandall and Lionsin[CL1], is
the “correct class” of weak solutions for Hamilton—Jacobi equations as well
as fully nonlinear possibly degenerate second order elliptic and parabolic
pde. We refer to the book of Barles [B] and the “User’s Guide” of Crandall,
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Ishii and Lions [CIL] for a general overview of the scope of the theory and
some of its applications.

We consider two different classes of finite volume schemes namely the
co-volume and the edge-centered schemes. In both cases the mesh consists
of triangles. In the case of co-volume schemes the approximating solution
belongs to the space of continuous piecewise linear functions (the standard
IP; finite element space), while in the case of the edge-centered schemes it
belongs to the space of piecewise linear functions which are continuous at
the midpoints of the triangles (the Crouzeix-Raviart space [CR]).

Both schemes are shown to be consistent and monotone. The general
theory of Barles and Souganidis [BaS] (see also Crandall and Lions [CL2]
and Souganidis [S]) provides the uniform convergence of the approximation
as well as an error estimate. In particular we show here thag i the
approximating solution, being the mesh size, then, as— 0,

(0.2) up, — w uniformly inRY x [0, T7.

Moreover, ifuy € C%H(RYN) N BUC(RY), then, for there exists' > 0
such that

(0.3) lu — up|| e < CRY2.

A different class of schemes defined on triangular meshes for (0.1) is
proposed and analyzed by Abgrall [A]. The schemes of [A], however, do
not appear to be easily extendable to second-order problems, as opposed,
for example, to the results in [Ch], where a detailed study of various finite
volume methods for linear second order problems is presented. Finite vol-
umes are widely used in the numerical approximation of conservation laws,
cf. e.g. [CCL] and the references therein. Co-volume methods for mean cur-
vature equations were studied in [W]. Finally we refer to [KMS] where we
consider finite volume schemes to second-order fully nonlinear problems.

The paper is organized as follows: In Sect. 1 we introduce the necessary
notation, define the schemes, and state our results. In Sect. 2 we recall the
abstract framework of [BaS] which is used to prove the convergence and the
error estimates. In Sect. 3 we prove our results showing that the schemes
under consideration satisfy the assumptions of the convergence result stated
in Sect. 2. To simplify the presentation throughout the paperwe only consider
the caseV = 2.

1. Preliminaries

We consider triangulatiorf®, of R? into nonoverlapping, nonempty, open

trianglesT’, with diameterhr, such thalR? = U T. We assume thaf;,
TET
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satisfy the following conditions:

() Intersecting triangles have either a common vertex
or a common edge.
(i)  No more thanu triangles have a common vertex.

(i)  h =suprer, hr <1,

(1.1) and

(iv) Ty is regular, i.e., there exists a constarihdepen-
dent ofh such that ifpr is the diameter of the largest
ball B C T, then, for allT € Tp,

hr < ~vpr.

The last assumption implies thatdfs a face of the triangl&’, then

(i) the lengthm(e) of the sidee andh are comparable,

(i) the angles of the triangles are no smaller than- 0 (minimal angle
condition), and

(iii) neighboring trianglesl” with 77, T N T" # () have comparable
area, i.e., there exist positive constants:, such thatym(7") < m(T) <
m(T")co, wherem(T') denotes the area of the triangle

1.1. Co-volume discretization

Given atriangulatiory;, we construct a dual (non-triangular mesh) with ver-
tices the circumcenters of the triangles and edges joining the circumcenters
of triangles that have adjacent sides. We associate to each verek,,

the set of all the vertices of the triangulation, the co-voldméounded by

the edges of the dual mesh (see Fig. 1). We denotéby < ¢ < 4, the
vertices of the triangles different from the common aghenumerated in the
counterclockwise direction, and lay,;, the line segment joiningl and A,

and byef12 the edge ol/,4 that intersects perpendiculady,. The triangle

AI+l

Fig. 1. The volumel/4
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AN
Oal+1

A

Fig. 2. The unit vectorgva,, andaia,¢41

with verticesA, Ay, Ay is denoted byl'4 ¢, and the angle between,,
ea,., by 04,. We also use the notatiai, , for the unit vector along 4,
directed towardsi, and the notatiorv; , for the unit vector obtained by
rotatinga 4 o counterclockwise 90(see Fig. 2). The part @fjl-/z that lies in

T'4,0—1 is denoted byzj;f and the one that lies ifi4 , is denoted byej;*.
Finally b4, is the line segment joiningl and the vertex o¥/4 that lies in
TA’g.

We construct approximations’ ~ u( -, t,), of the viscosity solution,
where{t, : n=0,1,...,N},isagiven partition of0, 7] with (constant)
time stepr = t,4+1 — t,. Our construction can be easily generalized to
nonuniform time steps. The approximating functighlies in the space of
continuous piecewise linear functions defined/gn i.e.,

ujp € Sp, = {p € C(R?) : |y € Py(T) for T € Tp,}.

Next we present a formal argument to motivate the choice of the scheme.
In particular we add a small diffusion term to the Hamilton—Jacobi equation,
integrate over the co-volunié, and replace the time derivative by a first-
order Euler approximation. We obtain

1
= | (ultngr) — ultn) )da
(1.2) ! /VA

ds

+ [ H(Du(t,))dz ~ e, / Ou(tn)
Va ovy Ov
where we denote by the outward normal to the boundaél’s of the
co-volume.
If u} is the approximating function at timg, we denote its value a4
by w}, with wy = uf}(A) ~ 575 [y, ults)dz. Then (1.2) takes the form

(1.3) n ouy
+ ) m(TAvgﬂVA)H(DuTA’Z)zeh,A/ —ds,

VAOTAJ
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whereu}, = wu?|. andDu} = Du}|,. . The diffusion coefficient
Tae hiTy . Ta 1Ty ,
en,a Will be defined below. Since; € Sy, uy it is uniquely defined by
its values at the vertices of the triangles; so, giugrwe computeﬁfrl by
(1.3).
We may also write the co-volume scheme as

(1.4) u = —THA(Du:T}AJ,...,Du’%A#A),
where the discrete Hamiltoniat 4 is given by

HA(DUTXJ, . ’DU%A,MA)

1
= Z m(Va N TA75)H(DU?~A [)
(1.5) m(Va) T vl ’

Eh.A ouy
— . ds.
m(Va) /BVA 19}%

The approximate solution} is reconstructed on each triangle by
interpolating the values at the edges, i.e.,

g @l = Il € P
’ where I7[u)(B) =ul, B € Vi(T), T € Ty,
andV;,(T) denotes the set of the vertices of the triarfjleFinally u) can
be selected, e.g., simply by interpolating the initial conditign
Our result is:

Theorem 1. Assume thati € C%!(R?), let T}, be a triangulation of

R? satisfying (1.1) and consider the scheme defined by (1.4) and (1.5).
There exist positive constani§ and Ccyy, such that ife, 4 = €,(A) =

K maxhr,, in (1.3) and

1.
(L7) g m(ea,

< CCFL7

then for allug € BUC(R?), ash — 0 andn — oo,

sup |u(A,t,) —up(A)] — 0.
AEV),, 0<n<N

Ifin additionug € C%!(R?), then there exists a constafit= C(, || Duo||,
|DpH||) > 0 such that

sup  |u(A,t,) — ul(A)] < Chl/2,
AV}, 0<n<N
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Fig. 3. The control volume for the edge-centered discretization

Remark 1.1 0ne can obtain explicit bounds féf and Ccrr, by keeping
track of the constants in the proof of Lemma 3.1 below. An estimaté'for
can be found in [CL2] and [S].

Remark 1.2The error estimates in [CL2] and [S] for monotone finite differ-
ence schemes are obtained for locally Lipschitz Hamiltonians. Indeed such
schemes are shown to be Lipschitz continuous since they commute with spa-
tial translations. This is not true in the case at hand. Actually it is typical for
finite volume schemes on unstructured meshes not to commute with spatial
translations. Hence there is no control in general on the numerical gradients.
The special finite volume schemes proposed in [A] are in fact designed to
be intrinsic and therefore to provide control on the numerical gradients.

1.2. Edge-centered discretization

Given a trianglel” of 7;, we denote by, (T), ¢ = 1,2, 3, the edges of the
triangle and byl, the neighbouring triangle that shares the edgeith

T. The middle points of the edges @f, T, will be denoted byA, and
Aj respectively/ = 1,2, 3, named in the counterclockwise direction. The
common middle points are thé;, A{. The unit normal vector, to the
common edge is directed towards. The set consisting of all the middle
points of our triangulation will be denoted By}, and the set of the middle
points of the triangld” by M;,(T).

We will construct approximations; ~ u( -,t,), of the viscosity solu-
tionu, where{t,,, n=0,1,..., N}, isagiven partition of the time domain
with (constant) time step = ¢,41 — t,. The approximating function}
will lie in the spaceh of nonconforming piecewise linear functions defined
on 7 introduced in [CRY], i.e.,

up € Xp={p |y €Py(T)forT €7, and
© is continuous at everit € My, }.
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Adding a small diffusion term to the Hamilton—Jacobi equation and av-
eraging over the union of two neighbouring triangleandT,, we are lead
to the following scheme, yielding approximate values of the solution at the
middle point4; = A§ of the common edge of 7" andT,

(1.8) uff;lrl =uly, — 7194, (Dup, Dup,) ,
where the numerical Hamiltonian is defined

gA, (DU?W DUTJL}) =94 (Du?“a Du?“ey Ve)
1

-y

<m(T) +m(Te)

(1.9) — Op[Duy, — Durp] - ve.

[m(T)Du} + m(Te)Du;ﬁe])

The approximate solution is reconstructed by its values at the middle
points by interpolating

up, (z)|r = Ir[u}] € P1(T),

1.10
(1.10) wherelr[uy](B) = u, B € My(T), T € T,

Also, u% can be chosen to be the elemenff that interpolates the initial
conditionug at the midle pointsi € Mj,.
Our theorem is:

Theorem 2. Assume thatl € C%(R?), ug € BUC(R?) and letT;, be

a triangulation satisfying (1.1). Consider the scheme defined by (1.8) and
(1.9) with 8;, given by (3.15). If theCFL condition (3.14) holds, then, as

h — 0andn — oo,

sup |u(A,t,) — up(A)] — 0.
A€M, ,0<n<N

If, in addition, uy € C%!(R?), then there exists a constadt = C(v,
|DpH || o, || Duol|) > 0 such that

sup  |u(A,t,) — ul(A)| < Ch'/2,
AeM}, ,0<n<N

2. An abstract formulation

Here we borrow from [BaS] to present an abstract result which yields, af-
ter checking its assumptions, Theorems 1 and 2. As stated in [BaS] this
result, which applies also to fully nonlinear second-order equations, yields
only local uniform convergence and no error estimates. A straightforward
modification of its proof, however, yields uniform convergence and error
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estimates for Hamilton—Jacobi equations. We refer to [CL2] and [S] where
such results were obtained for finite difference schemes.

Forp > 0let S(p) : B(RY) — B(RY), whereB(D) is the space of
bounded functions defined db — we useB(RY) instead ofL>*(R") to
point out that no measure theory is involved in this framework — be such
that the following conditions hold:

(2.1) monotonicity, i.e., ifu > v, thenS(p)u > S(p)v,
(2.2) invariance under translations with constants, i€p)(u + k) =
S(p)u+k, keR,

and
(2.3) consistency, i.e, for aff € C°(RY),

W — H(D¢) asp — 0.

Given such ar$’ and a positive intege! defineu,; : RY x [0,7] — R
by

(2.4)
S(t =iy Jum (idp ) @), it e (i, G+ D],
up(z,t) =
uo(x), if t = 0.
We have:

Theorem 2.1Assume (2.1), (2.2), (2.3) aiifl € C(RY),uy € BUC(RY).
Ifu € BUC(RN x [0, T]) is the viscosity solution of (1.1), then &6 — oo,

upr — w - uniformly on RY x [0, 77.

To obtain an error estimate, the consistency condition needs to be streng-
thened to
¢ —S(p)¢

(2.5) Y H(D¢)| < O(p(| D¢l + [[D?9]))).

We have:

Theorem 2.2Assume (2.1), (2.2), (2.9, € C%(RY) anduy € C%H(RY)
N BUC(RN). If u € CO%Y(RY x [0,T]) is the viscosity solution of (1.1)
andu, is defined by (2.4), there exists a positive constant C(||Dug||)
such that

luar — oo < CMY2,
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3. The proofs

3.1. Co-volume methods

ForT > 0 we defineS(r) : B(R?) — B(R?) as follows: Forv € B(R?),

let I,v € S, be its piecewise interpolant. Théf{r)v is given by applying
the scheme (1.4-6) th,v over one time step.

The fact thatS satisfies (2.2) is now immediate. In view of the fact (see
[BrS] for example)

ID(Ing = @)l < Ch|D?¢|,

and of the stability of;, in the max norm, it suffices to check (2.5) only at
the vertices. Since

Eh .
(3.2) (V) /(9VAp v =0,

the consistency condition (2.5) follows using the fact that, fopatl R?,

(3.3) Hy(p,...,p) = H(p).

The monotonicity condition (2.1) follows from the obvious fact tiat
is monotone and the following lemma:

Lemma 3.1 There exist constant8” and Ccrr, = C(K, 7, |DpH || 1<)
such that, if
en(A) = K max hr, , for a sufficiently large constarit” and

(3.4) max

< C,

then the scheme defined by (1.4) is monotone, i.e., the function

(3.5)  Ga(ua,ua,,... uAuA) =ua — THA(Dur, ..., DUTA,#A)

is a nondecreasing function of each argument.

Remark 3.1Explicit bounds forK andCcrr, can be obtained by keeping
track to the constants in the proof of Lemma 3.1. (See (3.10-12) below.)
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Proof. To prove the claim we need to find the explicit dependencé of
onug,;. \We begin by expressin@uTAé in terms ofu4,. We have
1
- (aAz’ aAe+1)2
_ (aAev aA£+1)
1- (aAev aAz+1)
1
D ~
" [1 - (aAuaAe-o—l)Q( UTAwOéAl-H)
B (aAev aAe-H)
- (aAw aA£+1)2

(DUTAZ’é\j) = [ (DUTAZvaAe)

D) (DUTAZ Ay )} (@, €5)

(DUTAE ) aAz)] (aA[+1 ) gj)’

wheree;, e are the standard unit vectors,

up, —UA

D ayg,) = and
( uTAg’aAZ) m(eAZ)
(3.7) 0 By Ve~ U
I ) e, )
Also
en ouy, en Up, — UA 1
3.8 = m(e .
B9 oy L B = i 2 any) Men)
Using (1.5), (3.7) and (3.8) we obtain
0
—G
ouy A
-
=1——— Y m(VanTag)Hpy(Dur,,)
m(Va) .
'A,eNVAF#D
1 (@, 0apy,) 1 ] ~
X — Qa,,e
{1_(0514(’0‘14@“ |: 6Ae+1) m(eAe) ( A k)
aAg7aAg+1 1 ]
+ - QA
1—( O‘Aevaz‘\eﬂ )2 [ eAz (eAzH) ( At k)}
ek )
€4,)

m(Va)~ %: (

where we follow the summation convention for the repeated ifkdex
Our assumptions on the mesh imply that

(i) m(ea,) andm(es,,,) are comparable with a constant independent of
the partition,

(i) 1—(aa, aAeH)Z = Co >0,
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and
(iii) m(ey,)/m(ea,) is bounded from above.

Hence there exist positive constaiifs, K5 independent of the partition
Tr, such that

T C
|B1| < m(Va) > m(Van 714,1&)@”1713}1&0o
T, eNVa#D Ac

< Ki||DpH ||~ max

m(eAe) ’
and
T T 1
Bl < A) < A
|Bs] < m(VA)Clgh( )< m?X m(ea,) miny h’TA,Z Cien(4)
< K9 K max i
¢ m(ea,)

It is the last step above where we used the regularitf,and the fact that
the viscosity coefficient;, is given by

(3.9) ep(A) = Km?X hr,,
Therefore
SeGa 0
provided that
1 — max m(;‘é) [KlHDpHHLoo + K Ky| >0,
i.e.,
(3.10) max —— !

< :
¢ mlea,) ~ Ki||DpH|[r~ + K Ky
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We finally compute

ﬁm(VA NTa-1)

A
-
Va
2 ~ -~ ~ ~ ~ o~
% Z [(O‘Awek) - (aAzzfvaAe)(aAzfv k)
k=1
T

m(ea,)(1 — (Qa, ,,04,)%) }Hpk(DUTA,e,l)

— VanT
m(VA)m( ANTa)
2 ~ -~ ~ ~ ~ —~
(O‘Aw ek) - (aA1z+1 ) aAe)(aAeH ) ek)
<3| SRS | #ye(Dur, )
; m(eAz)(l - (OKA,_7+1,OZA£)2) PE At

7 mles,)
TR (Va) miea,)

The assumptions on the regularity of the mesh yzie(@j[)/m(e/,z) >
C, , therefore, as before, for some constahindependent ok,
0
—Gap >
Dun, Gy >

A)Cy — M h D,H|| e
) MG — M macha, [ D]y

In view of (3.9) we see that

Oupy, Ga 20,
provided
(3.11) i = MIDpHllr
C’0
If (3.11) holds, and
(3.12) max —— < 1

m(ea,) = |DpH|| Lo (K1 + K2 M/Cy )’
then (3.10) is also satisfied and the scheme is monotone.

The proof of Theorem 1 follows now from Theorems 2.1 and 2.2.
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3.2. Edge-centered schemes

For 7 > 0 we defineS(r) : B(R?) — B(R?) as follows. Let7, be

a dual to7;, partition of R? consisting of the rectangles that are created
if we connect the vertices of each triangle Bf with its barycenter and
elliminate the edges of the triangles Bf. Forv € B(R?), let Iy e Xy

be its piecewise interpolant. Let furthey, € X}, to be the function we are
getting by applying the scheme (1.8—9)?';9) over one time step. Sinde

is not monotone, we introduce the interpolaht to the set of the piecewise
constant functions off/, i.e.,

thp’R]\/[ = gO(M), M € My, Ry € 7;1/

Note that there is a one-to-one correspondence between the set of the middle
points M}, of 7, and of 7. Then we sefS(7)v = IIj,vp.

The fact thatS satisfies (2.2) is immediate. Since, torc Rj; andp
smooth,

|H(Dg(M)) — H(Dp(x))| < Ch||D?*¢ll, M € My, Ry €Ty,

it suffices to check (2.5) only at the middle points. But then the consistency
condition with the error estimate (2.5) follows from the observation that, for
all p € R?,

(3.14) ga(p,p) = H(p),

and the approximation propertiesELf, (cf. [CR], [BrS)).
The monotonicity ofS follows from the monotonicity ofl{;, and the
following lemma.

Lemma 3.2 Assume that all the angles of our triangulation7;, satisfy
w < wp < m/2, wherewy is independent df. Chooséd}, in (1.9) such that

_|DpH|e  m(T)

1 A .
(3.15) On(A) coswg m(T)+m(Te)
If the CFL condition
(3.16) max T m(e) k)

e m(Te) = |DpH| L~

is satisfied then the scheme defined (1.8) is monotone, i.e., if; far M,
the function

GAl (uAl sy UAg, UA3, uASa uAg) =UA, —TgA, (DUT7 DUTE)

is a nondecreasing function of each argument.
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Proof. Let {&,}7_, and {®¢}7_,, to be the Lagrange polynomials cor-

responding to{ A,}7_, and {AS};_, respectively, i.e.p,, ¢ € Py and
@g(Ak) = (5gk, @?(Az) = . Then

Qy(z)uy, fzel,

o~
Il w
—

3
Z@Z(w)uAZ, if v €T,.
kle

We have:

Ga, =ua, —TH

1 3 3 )
X <m(T)+m(Te) <m(T) ; D&y(x)ua, +m(Te) ; D@K(m)u%))
3

+0, > [DP}(x)us; — DPy(x)ua,] - ve.
/=1

SettingB, = m(m(T)DuT +m(T.)Dur,), we compute

e
ua, T m(T) +m(Ty)

o Hya (Be) Im(T)Das @1 + m(T,) 0, %5 }
+ Tgh(DQST - D@l) Ve .

{ Hyy (B m(T)00, @1 + m(T,)0,, 5]

Since
AsAs/ /e, ASAS/ /e, D1, DD Llea,,
we have
1 m(e)
Doy = " e — e
L7 dist (AsAs,e) ¢~ m(T)”
(3.17) ) m(e)
DS = —— Ve = — Ve.
dist (A4S, e) m(Te)
Therefore,

m(T)0y, 1 + m(T,)0y, & =0,  i=1,2.

We conclude observing that, in view of (3.16),

(3.18) 811241)6{41 (ur,ur,) =176 (TZL(%@Q) + 2((;))> > 0.
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Fig. 4.

We also compute, fof = 2, 3,

0
GA1 (UT, uTe) = - T

{Hp, (Be)(m(T) 0z, )

dua, m(T) +m(Te)
+Hp2 (Be)(m(T)azzég)} — TtghD!pg * Ve.
As before
_ m(ea,)
Do, = 7m(T) Vey,-

By our assumption for the angles of the triangles we haygAe Ve >
cos wy, (cf. Fig. 4). Therefore (3.17) yields

8;;6*,41 > — TQhT:LTE?;g)ye Ve, — T”DPHHLwnm
ZTth:TE?;l;) coswp — THDPH”me.
If
On = On(A1) = HDCI;i)HOLOO m(T;?:(—TTZL(Te)’
then
aSAe 4 20,

and the proof is complete.O
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