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ABSTRACT. We propose an a—posteriori error estimate for the Runge Kutta
Discontinuous Galerkin method (RK-DG) of arbitrary order in arbitrary space
dimensions. For stabilization of the scheme a general framework of projections
is introduced. Finally it is demonstrated numerically how the a posteriori error
estimate is used to design both an efficient grid adaption and gradient limiting
strategy. Numerical experiments show the stability of the scheme and the gain
in efficiency in comparison with computations on uniform grids.

1. INTRODUCTION

In this paper we study a generalized version of the Runge Kutta Discontinuous
Galerkin approximation of Cockburn and Shu (see [8, 6, 9]) for non linear scalar
conservation laws in several space dimensions. As a prototype conservation law,
consider the Cauchy initial value problem

(1a) Ou+V-flu) = 0 in R? x R,
(1b) u(z,0) = wo(zx) in RY.

Here u : R? x Rt — R denotes the dependent solution variable, f € C*(R) denotes
the flux function, and uy € BV(RY)NL>(R?) the initial data with ug € [A, B] a. e.
It is well known, see for example [12, 11], that (1a)-(1b) admits an unique entropy
weak solution in the class of functions of bounded variation (BV). For later use let
us briefly recall that an entropy weak solution is a weak solution of (1a)-(1b) which
satisfies for all entropy pairs (S, Fs)

@ - / / (S(u)0u + Fs(u) - V) dt der — / S(u0)¢(,0) dz <0
Rd

RIR+
for all ¢ € Cj(R? x RT | RT).

Recall that (S, Fs) is called an entropy - entropy flux pair or more simply an entropy
pair for the equation (1a), iff S is convex and

(3) FL=8'f.

Numerical methods for nonlinear hyperbolic conservation laws are usually rather
complicated since they need to approximate a partial differential equation with non-
standard stability behaviour. It turns out that in many computational successful
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methods the theoretical backup is very limited. This is partly because when con-
structing high order methods stabilization terms have to be added so that in the
limit the solution satisfying (2) is computed. These mechanisms include shock cap-
turing terms or limiters that result in complicated and highly nonlinear schemes,
see [7] for a comprehensive review of high-order finite difference, finite volume, and
finite element methods for hyperbolic conservation laws. The Runge Kutta Dis-
continuous Galerkin approximation of Cockburn and Shu, [9], is a very successful
method that combines many desirable properties. It is based on totally discontin-
uous finite element spaces for the space discretization while the time discretization
is based on appropriate Runge-Kutta schemes. The available theory for RK-DG
methods for nonlinear problems is limited to certain stability and TVD properties
proved in [10, 9] and to error estimates for one dimensional smooth solutions (see
[30]). The problem of showing convergence towards the unique entropy solution for
the high-order version of these methods seems rather difficult.

In this paper we consider a generalized version of RK-DG methods designed
for use with dynamic mesh modification. We are interested in the following ques-
tion: “is it possible to establish a rigorous error control for RK-DG methods in
mesh adaptive computations?” An answer to this question will be based on cer-
tain a posteriori estimates and does not necessarily depend on available a priori
convergence results for the method. One of the consequences is that it provides
a (nonstandard) way of theoretical backup for a method with no available conver-
gence theory, compare with [13] where this was done for MUSCL finite difference
schemes.

First we prove a posteriori error estimates for generalized DG methods. We then
use these estimates to provide an adaptive h—p algorithm that is used together with
a rigorous error control. The computational performance of the resulting methods
and algorithms is tested in one dimensional examples.

The literature on a posteriori error control and adaptive solution algorithms
for Discontinuous Galerkin approximations is rare. We refer for instance to [15,
23] where duality techniques were used for designing adaptive schemes, and [1]
where asymptotically correct a posteriori estimates of spatial discretization errors
for smooth solutions were derived in one space dimension.

2. FORMULATION OF THE GENERALIZED DG METHODS AND MAIN RESULTS

Let 7 denote an element decomposition of R? with control volumes T; € T,j € J
such that Ugre7T = R%. Let hr denote a length scale associated with each control
volume T, e.g. hr = diam(T"). For two distinct control volumes T; and T in T, the
intersection is either an oriented edge (2-D) or face (3-D) S;; with oriented normal
v;; or else a set of measure at most d — 2. The set N(j) denotes the index set of
neighboring control volumes to T} and the index set of the oriented edges or faces
of the grid is given by £ = {(4,1)| Tj € T,1 € N(j),j > l}. The set of edges or faces
of the element decomposition 7 will be denoted by T

On T we define the space of (possible) discontinuous piecewise polynomials of
degree p by

(4) Vi o= {un € BV (RY)| vy := vp|r € P, for all T € T}.
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Let us denote by HVhp the L2-projection into V. Furthermore, following standard
notation, [vx]|s;; := (vj|s;; — vils;;)vi; is the jump of v on the edge Sj;, and
{vn}s;; :=1/2(vjls;; + vils;;) denotes the mean of vy, at an interface.

The semi-discrete DG-finite element scheme is the basis of the definition of RK-
DG methods.

Definition 2.1 (Space-discrete DG approximation). u, € C*(0,T;VY) is called a
semi-discrete DG approzimation of (1a)-(1b), iff

(5a) up(0) = yr (uo),

(5b) %(Uh(t),vh) = (f(un(®), Vor) + (fa(un(t)), [val)r = 0 for all vy € V.

Here (-,-) denotes the L? inner product, (-,-)r denotes the L? inner product on
the set of interfaces in T', and f, denotes a given numerical flux function that is
uniquely defined on the interfaces of the element decomposition. Detailed assump-
tions on f; will be stated below.

Note that due to the fact that both u, and the test space V¥ are completely
discontinuous, the global definition of the scheme (5b) is equivalent to the following
local definition.

(6) %(uj(t);vj)Tj = (f(u;(8)), Vvj)1, + Z (Fu(u; (8), w(t)), v;)s,, =0,

IEN(5)
for allv; € P, T; € T.

Here (-,-)7;, (-,-)s;, denote the local inner product on T}, Sj respectively, and
f1(u;(t),w(t)) is the restriction of fp(up) to Sj. Note that the numerical fluxes
f1(u;(t),w(t)) are usually defined via a standard finite difference “upwind - type”
one dimensional flux, and it is the only source of “artificial viscosity” in the scheme
(5b). We make the following standard assumptions on the numerical flux function.

Assumption 2.2 (Numerical flux function). The numerical fluzes are supposed to
be functions f; € C*(R%,R) which satisfies for all u,v,u’,v' € [A, B] the following
conditions (respectively: monotony, conservation, reqularity, consistency):

(7a) Oufji(u,v) >0, Oy fi1(u,v) <0, Fit(u,v) = = fij (v, u),
(70) fi(u,u) = n|Sulf(u),  |fu(u,v) = fu(u',0")] < LSj|(Ju —u'| + v — ')

In the literature of DG methods the stabilization due to the “upwinding” of the
discrete fluxes is usually accompanied by extra artificial “shock capturing” terms
as in [16, 17, 4] or limiting projections as in [9]. (Error estimates for the shock-
capturing DG method were obtained in [4]). The RK-DG methods introduced by
Cockburn and Shu are based on a combination of limiting projections and Runge
Kutta discretization of the ode (5b). Therefore, in the next step we are going
to introduce limiting projections in the discretization that will be chosen later in
Section 5.

2.1. Generalized semi-discrete DG approximation. We introduce a hybrid
scheme that incorporates all the characteristics of a RK-DG scheme used with
mesh modification with time, but assumes that the ode in time is solved exactly
in each time step. To this end we introduce a partition of the time interval (0,7T),
{0 =1° ..t = T}, and we define the time step At" := t"*! — ", With each
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time interval (¢",¢"*!] we associate a (possibly different) finite element space V;
denoted by

(8) VP, = {vn € BV(RY)|vp|r € P, for all T € T}

The associated index set of T, is denoted by J". In the sequel, when this will not
be a source of confusion we might drop the index n in objects related to the finite
element space.

To define a local projection operator we proceed as follows: We define 7, through
75 = Ilyo (v)|; for any v € L*(Q2), i.e., Uy, is the element wise average of v. Fur-
thermore, with each n we associate projections AZ’t with the following properties.

Assumption 2.3 (Projection operator). The projection AZ’t 1s supposed to be a
continuous function with respect to t on the interval [t",t"F1]. Ift € (t,t"1], the
operators act Ap' : VP — VP and satisfy

) AR (on (1) = on(D), te (@t

In addition AZ’tn : Vino1 = Vi, is a projection to the new mesh, still with the
property

(10) AR (wn (- t7)) = va(t?) .

In the last equation the element wise average is taken in the new mesh, i.e., corre-
sponds to the projection Ilyo . At t™ the two operators AZ’t and Az_l’t satisfy

(11) AT (un) = Trlloo < AT (un) — alloo

Properties (9), (10) lead to a conservation of mass, whereas assumption (11)
guarantees that the gradients in the discrete solution are not increased between
time steps. Note that AZ’t accounts for both limiting projections and projections
to the new spaces. We define the restriction of AZ’t on the element T; by A?’t :

APE =AY i Ty x [, e g™
We now define the generalized semi-discrete DG approximation.

Definition 2.4 (Generalized semi-discrete DG approximation). Let us suppose that

a projection Aﬁ’t with the above properties is given. In addition assume that the

discrete fluzes f;; are monotone. The function uy s called a generalized semi-

discrete DG approzimation of (1a)-(1b), if for uy ' = IIy» (uo) un satisfies:
Forn =0,..,N =1, uf|yn gmi1] € C* (", t"tHVE ) ds defined through

(12a) up(t") = AR (),
(fin

(12b) jt( HORE: = > A7 (), AT (i (), v))sy,
N ()
t)

IEN(]
+HFAP (i (1), Vuy)y, for all v; € Py j € Tt € (t",t"H).

The global approzimation uy, € L*°(0,T; V,f”n) is defined through up(0) := u, ', and
Uh|(tn’tn+1] = uzl(tn’tn+1].
In Section 5 we combine the above method with Runge-Kutta time discretiza-

tions of the ode (12b) to obtain the generalized class of fully discrete RK-DG
methods. This class includes the method of Cockburn and Shu but we consider
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also alternative choices for the limiting projections motivated by the a posteriori
result for (12a)-(12b) proved in the sequel.

2.2. A—posteriori error estimate for the semi-discrete DG method. We
will show a posteriori estimates for the error ||(u—up)(T")||z:- To do that we compare
u and up, with @, defined as:

(13) an(t) = APt (up(t)) fort € (t™,¢"*'], n=0,...,N—1.
Then ||(@p, —up)(T)||: is an a posteriori quantity and the control of ||(u—up)(T)|| 2
will be obtained in the sequel by employing Kruzkov estimates.

Note that by definition @, might be discontinuous at the time nodes t". This
will be the case either when the spatial mesh is modified at this node, or when we
decide to use different projections on (t"~!,¢"] and (t",¢"*1]. In fact due to the
definitions of uy and the projections we have
(14) Tn(t™F) = Tn(t") = AR un (™) = AR~ un (") = (AR = ARV un(t) -

Before stating our main result we introduce the following notation:

u; =uy inTj, a™ = 1wy in (", ", a™(t") = up(t™),
with the obvious extension for combined indexes.
Theorem 2.5 (A-posteriori error estimate for the semi-discrete DG method). Let
up, be given by the semi-discrete generalized DG method (12a)-(12b). For uy, given
by (13) we have the following a—posteriori error estimate
[(w = un)(T)l|Lr(Br(zoy < (@ —un)(T)|Lt(Br(zo)) + [t = Gn) (D)Lt (Br(wo))
< l@r = ur)(D)l| L2 (Br(wo)) + 10

where 1y 2= no + VEim + VEKana, no = Y N0, M = 2, 2 0,0 = 1,2, and

jeJo n jeJn
the local contributions n;’; are given as

(150) m; = [ o —00)]

T.
gt ¢t
(15b) nf; o= / /h 2ty + V- £@) / > i [ Qu i -
) lEN(5) Si
+/hj|ﬂ"(t") —a" ")),
tn+1
15) w3, = [ 1T = Tlrecry 107+ 5 - 5@
tn TJ'
tn+1
by [ X s I - @l / Qi@ @i ~ |
2 1ENG) ke{Jl}

HITTE) =T )y [0 - T @)

T;
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Here, we used the notation

Qui(u,0) = 2f;1(u,v) — f;lﬁL;JU) - fjl(v,v)7 hyt = diam(T; U T)).

The error estimator in Theorem 2.5 is composed of the two parts 7:1,72. The
first part corresponds to the standard estimates known for first order schemes [5,
20, 26] and the second part of the estimate corresponds to error terms which are
only present in higher order approximations. In the following Corollary 2.6 we
have rearranged these terms so that the estimate is more suitable for designing an
adaptive scheme. The estimate is localized on the control volumes (7, ¢"*1) x Tj.
Here the error is split into three terms R7. ;, R ;, R} ; that account for the different
sources of error in the Discontinues Galerkin method. The first term is the element
residual found in most error estimates for finite element methods; the second term
takes into account the diffusion in the numerical flux function; the third term
combines two sources of error between successive time steps, on the one hand side
the error due to limiting and on the other hand the error due to grid changes.

Corollary 2.6. With the assumptions and notations of Theorem 2.5 it follows that
(16) nn < mo+ Ry, with R} = 22 Z p?( T+ Rs;+ RX,j)

n jeJr
and

(17a) P? = Kihj+ K> ke{fllgfv(j)} [[af — 77?||L°°((t",t"+l)ka),

g+t

(17b) R}, = Aty +V - f(uy)
T,j t/ﬁ/‘ tuj + Uuj

Y

g+t

(17) R, = / > /Qﬂ@j,m)mj—aﬂ,

tn lEN(j) Sjl

/|ﬂn(tn+1) _ an-ﬁ-l (tn+1)|.
T;

(17d) R},

Proof. The estimate i, < 19 + Rp, is a direct consequence of Theorem 2.5 if we
estimate /K1m1 + Kane < v2K1m + 2Kon,. By rearranging terms in Kymy +
K>n and using hj; < hj + hy, equation (16) follows. O

We are now going to discuss some aspects of the error estimate:

Semi-discrete vs. fully discrete estimates. The above a posteriori result is extended
in a straightforward manner when the ode (5a) is discretized by Euler’s method.
RK-DG methods though use high order Runge Kutta schemes for time discretiza-
tion. We have decided to present the result in the above hybrid semi-discrete
scheme since we expect that an a posteriori result for high-order RK-DG methods
will be of the form of Theorem 2.5 plus additional terms for the error due to time
discretization. The proof of a result for high order Runge-Kutta schemes requires
new ideas and is the subject of future work.

The error bound of Theorem 2.5 is used to design our adaptive algorithm in
Section 5. To do that we need to introduce in Section 4 the fully discrete generalized
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RK-DG methods and to express it as an ode for each time slab [t" ¢"+1]. This is
done in Section 4 by using the “continuous extension” for Runge Kutta schemes
introduced by Zennaro [29].

First order vs. high order estimates. In the case where p = 0 the DG method reduces
to a standard finite volume scheme that allows mesh modification with n. Then the
first term in 77’ ; and the whole 73 ; will be zero. The last term in 77 ; will account
for coarsening errors due to mesh modification. Such terms were not included in
the previous a posteriori estimates for finite volume schemes, [5, 20, 25]. Another
implication due to higher order polynomials used in the finite element spaces is the
appearance of ﬁ — 4} in various norms in the term 77 ;. A comparison with ' ;

leads to the conclusion that it would be desirable to have ﬁ —a} = O(hy). In
general this is not guaranteed unless 47 is a result of certain limiting projections
which restrict gradients or/and polynomial degrees of up. This observation is one
of the main motivations for the choice of the limiting projections and the design of
the adaptive algorithm in Section 5.

Computational “convergence” of the estimators. Theorem 2.5 is a rather general
result that covers any projection A}"* with the properties (9) and (10). In addition
due to the generality of Kruzkov’s estimates used in the proof the above a posteriori
bound can be seen as a “worst case scenario” upper bound. It is clear that if in the
computational runs the estimators converge to zero then the error will do the same.
On the other hand in certain test cases examined in Section 6 it happens also that
the estimators computationally do not converge to zero while the error does. In
this sense Theorem 2.5 allows for the design of error control algorithms based on
upper bound estimates. This issue is discussed in detail in Sections 6 and 5. At
this point we would like only to note that, among many other choices presented in
Section 5, h — p versions of RK-DG methods seem to allow error control algorithms
based on the estimators of Theorem 2.5. On the other hand for the test problems
discussed in this paper it seems that for the RK-DG methods with limiters from
[8, 6] the estimator of Theorem 2.5 computationally does not converge to zero while
the error does. Whether this is a weakness of the bound in Theorem 2.5 or indeed
reflects the fact that this method does not converge to the entropy solution in all
cases is not clear. The modified limiters based on gradient restrictions suggested
in Section 5 address this issue. Concluding, we are able to provide adaptive error
control based algorithms for both h — p and gradient restriction generalized versions
of DG methods.

The rest of the paper is organized as follows: In Section 3 we prove Theorem
2.5. The proof is based on an abstract Kruzkov estimate for approximations of the
entropy solution of the conservation law (Theorem 4.2) and on a weak cell entropy
inequality for the method (Lemma 4.3). In Section 4 we present the fully discrete
generalized RK-DG method and their continuous in time form with the help of
the “continuous extension” for Runge Kutta schemes. In Section 5 we present
the limiting projections and the adaptive error control based algorithms for the
corresponding DG methods. In the last Section 6 we discuss the computational
performance of the various methods in several test cases.
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3. PROOF OF THE A—POSTERIORI ERROR ESTIMATE

3.1. Abstract error estimate. In this subsection we establish an error estimate
for approximations of conservation laws. It is an extension to smooth entropies of
the corresponding results in [19, 18, 3]. The notation and the form of the result
follows [18, Lemma 4.1]. We start with the definition of the entropy residual.

Definition 3.1 (Entropy Residual Rs). Let i € L®(R? x Rt) be an arbitrary
function. Then, corresponding to the definition of an entropy weak solution, we
define the entropy residual Rg by

(18) // S(@)d¢ + Fs(a v¢+/su0

RIxR+

For our a—posteriori error estimate we require a regularization of the standard
Kruzkov entropy S(v) = S(v — k) = |v — k|

Definition 3.2 (§—regularized Kruzkov entropy). Let S € C*(R,R*t) be given as
S(w) = (6v? —v*)/8 if |[u] <1 and S(v) = |[v| — 3/8 otherwise.

For any § > 0,v € R let us define S5 : R = R by Ss(v) := 65’(%). Furthermore,
define Fs 5 : R> — R for any v,k € R by Fss(v,k) == [ f'(w)Ss(w — k)dw.

In the following result, u; stands for any approximation problem (1a)-(1b).

Theorem 3.3 (Abstract Kruzkov estimate). Let up,u € L2, ([0, 00), L}, (R?)) be
right continuous in t, with values in L}, C(Rd). Assume that u is the entropy solution
of a given conservation law, i.e., it satisfies (1a)-(1b). Let S(v) = S(v—k) = Ss(v—
k) be the d—regularized Kruzkov entropy and by Fs(v) = Fs(v, k) = Fs5(v, k) the
corresponding entropy fluz. Let ¥ a nonnegative test function ¥ € C°((0,00) x RY)
and assume that uy satisfies,

(R (un), T) = —//(0 o (Sun =00 + Fi(un, ) VoWt

9T
Y
< //(0 e (,BOBO(\II) + ag|o | + Ej ,BHBH(axj ))da:dt, for all k € R,

where ag, Bo, ,qu, are nonnegative k-independent but possibly § dependent func-
tions in L}, ,([0,00) x R?) and ag € L{2.([0,00), L}, .(R?)).
For fired A,6 > 0, let T, = {K} be a given element decomposition of [0,00) x R?
into elements K, such that diam(K;) < A in the case where Bo or B}'I, s not
identically zero; here Ky = {z : (t,z) € K}.

If in addition, for all (t,z) € K, 1< 14,5 <d,

. OU ov
(19) |Bo(¥)(t,2)| < C sup [¥(t,2)], |By (5562 < C sup |o—(t,2 plE
2 €K, T z'€K; 'Z-]

where C' is a uniform constant independent of ¥ and the element decomposition
Th, then the following estimate holds: for any T > 0, g € RY, R > 0, p > 0 with
M = Lip(f), we have:
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/ lup(T,z) — u(T, z)|dz < / |ur (0, z) — (0, z)|dz + C (M +1)TV(u®) A
lz—zo|<R

Bo
+ C{leV(uo) + kO Xsupp(un —u)(T) (R + A)d } 4

+C(1+W) sup / ag(t,z)dz
0<t<T+p

+C// ﬂta: ﬂ’tw dzdt
<t<T zeBp © Az )

where By = B(zo, R+ M(T —t) + A), B® = B(zo,R+ M(T —t) + 2A), and xp
denotes the characteristic function of the set D.

Proof. The proof follows [3, 19, 24]: we seek two nonnegative functions ®,( €
C>((0,00) x R?) that will be specified later and we set

¢(t,$,8,y) = @(t, ZU)C(t — 8T — y) .

Then the approximate inequality for ¥ = ¢(-, -, s,y) with fixed (s,y) € (0,00) x R?
and k = u(s,y) yields

_ //// [S(uh(t, z) —u(s,y))0d(t, z,8,y)

+ Fo(un(t,2), u(s,y)) - Voo(t, z,5,y) | dsdtdyds < B’

R = /// Bo(t,2)Bo(#(t, 3, 5,y)) + G (t, 2)|0r(t, 3, 5,9)]

+ Z B}'{(t, :U)qu (Oz;9(t, , 8,y)) dsdtdydx .

J
Notice that BO,B}‘{ act in (t,z). Next, using the fact 0;( = —0s(, Vo{ = —Vy(,
we obtain

— [S(unt, ) = u(s,1) )0ud(t,,5,9) + Fs(un(t,2) , u(s,9)) - Va(t,,5,9)]
= —[Stun(t,2) —u(s,9))09(t,2)
+Fs(un(t,2), u(s,y)) - Vod(t,2)|C(t = 5,2 )
—[S(un(t,2) — u(s,9))0¢(t = 5,2 )
+Fs(un(t,@) , u(s,y)) - Val(t = 5,2 — )| @(t, )
= —[Snt,2) — u(s,9))00(t,)
+Fs(un(t,z) , u(s,9)) - Va®(t,2)| ((t — 5,2 — )
+[Fs(un(t,2) , uls, ) — Fs(u(s,y) , un(t,)) - VyC(t = 5,2 — y)| @(t, )
+[Stuls, y) = un(t,2))0,C(t = 5,2~ y)
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+Fs(u(s,9), un(t,2)) - VyC(t — 5,2 — )| (¢, 2).

We emphasize the presence of the second term in the last equality which is due
to the lack of symmetry of the regularized entropy flux Fs(v, w). Integrating with
respect to all variables and noticing then that the last term is positive by the fact
that v is the entropy solution of the conservation law, we get

(22)
_//// [S(uh(t,m) —u(s,y) )0 ®(t,x)

+ Fs(Uh(t, .'E) ’ U(S, y)) . Vw@(ta .Z')] C(t — 8T — y)detdyd.’E S Rﬁ + RS J

where

(23) == //// [Fs(un(t,2) , u(s,y)

— Fs(u(s,y), un(t, w))] -Vy((t — s,z — y)®(t, z)dsdtdydz .

We proceed with a specific choice of ®(¢,x). Let § > 0, we define Yy(t) so that
Yp(—o0) = 0 and Yy (t) = $Y'(%), where Y' € C°((0,1)), Y' > 0 and [Y' = 1.
For a new parameter € > 0 we set
X(t)=Y(t) -Y(t-T) € C((0,T +¢)), X >0
XO(t) = sz(t)a XT(t) = }/;(t - T)a X(I)aXé’ >0.

Finally we define ¢(t,z) = 1 —Yj(|z — 20| - R— A/2— M(T —t)) > 0. We now
set

(24)

B(t,z) = X(1)y(t, ).
Notice that ® € C* as long as Me < R+ A/2.
In the sequel it will be crucial to note that the entropy flux satisfies

(25) |Fs(v, w)| < MS(v—w),

where M is the Lipschitz constant of f. Indeed, in the case where v > w,
v v
(26) |Fs(v, w)|= |/ f(8)S' (s —w)ds| <M / S'(s —w)ds=MS(v—w).

Similarly for v < w. Using the specific choice of ®, the Lipschitz condition on f,
and (25) we have
S(up(t,z) —u(s,9))0:®(t, ) + Fs(un(t,z), u(s,y)) - Vo @(t, )
= S(un(t, z) — u(s,y)) X' )y (t, )
— X(1)Y; { MS(un(t, z) = u(s,9)) - Fs(un(t,2), u(s,)) - £=22 |
< S(up(t,z) —u(s,y)).

Therefore

- //// S(up(t,z) —u(s,y) X' ()Yt 2)((t — s, 2 — y)dsdtdydz < R® + RS .

We add and subtract S(up(t,z) — u(t,y)), S(ur(t,z) — u(t, z)). Using the fact that
the Lipschitz constant of S is 1 we finally get

_ / / / / S(un(t, 2)—u(t, 2)) X' ()t 2)C(t—s, s—y)dsdtdydz < R'+R*+R°+RS,
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where

R® — //// lu(t, ) — u(t,y)| | X' ()|(t, 2)(t — s,z — y)dsdtdydz ,
Rt — //// lu(t, y) — u(s,y)| | X' ()| (t, )¢t — s, — y)dsdtdyds .

Then notice that in view of the definitions of the regularized entropy S and of X
we have

—S(un(t, z) — u(t, ) X' )Y (t, z)
= =S(un(t,z) — u(t,2)) Xo ()9 (t,z) + S(un(t, z) — ut, z)) X7 ()Y (¢, z)
> —|un(t, z) — u(t,»)| Xo ()¢ (t, 2) + |un(t, z) — u(t, 2) X7 ()Y (t, )
— 6 koXsupp(un—w) (t,2) X7 (t) -
Note that for 8 fixed and ¢ small,

1B(zo, R+ M(T—t)+A/2) < Y(t, ) < 1B(go, Rt M(T—t)+A /240 -

We pass to the € — 0 limit with the choice § = A/4. As in [21, 3] we have

0 < lim sup { //// Sup(t,z) —u(t,z)) X' (t)Y(t, )¢ (t — s,z — y)dsdtdydz

e—0

+Rt+R$+R5+R5}

where
lim sup //// S(up(t,z) —u(t,z)) X' )Y, z)¢(t — s,z — y)dsdtdydx
e—0
< / |uh(05 SU) - U(Oa :U)|d.CL' + / 6k0Xsupp(uh—u)(T,m)dx
|z—zo|<R+MT+A/2+40 le—zo|<R+A/2
- [ (T - uT ol

lz—zo|<R+A/2

and

limsup R! < 2E%, limsup R® < 2E°.

e—0 e—0

The term R? is bounded as in [19, 3]. The last term R° is handled as in [5,
24]. Indeed integrating by parts with respect to y and using the properties of the
d—regularized entropy flux we get

|R%| < CIIF"||loo k1 TV (u°) 6.
The proof is therefore complete. O

3.2. Estimate on the entropy residual. To apply the abstract theorem of the
previous subsection we need to estimate

<RS (ﬂh)a ¢>

for ¢ being a test function and 4y defined in (13). This will be done in the following
lemmas. We start with a weak discrete local entropy inequality:
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Lemma 3.4 (Weak cell entropy inequality for the semi discrete DG approxima-
tion). Let (S, Fs) denote a smooth entropy pair. Then the following cell entropy
inequality holds for uy,.

where for ¢ € C(R? x Rt RY),

Iln;] = (8755(6_7) +V- FS (ﬂn)a ¢_j)Tj 3

I27’;] = Z (FJl(ﬂn uy' ) FS( ) njla(ls_j)sl )
IEN()) it

I}, = (8a} + V- f@@y),(S'@r) — 8'@}))é;);,

1y =Y (Fa@ ) - @) -, (S'@) - S @E)
IEN()) it

pr = Y / O fin (i )/ SII(S)dew,(ﬁ_j)S‘
leN() 7% w it

Here Fji(a, B) f Osfji(a, s)S'(s)ds + Fs(a) is a discrete entropy flur that is
consistent with Fg.

Proof. Let p > 0. We start by choosing v, = S'(u})@y, in the local form the scheme
(12b). This yields

O}, S' (@) bs)r, + Y (Fu(@y,a), ' (@5)ey)s, =
leN(3)
Next, (9) implies (3suf,v;)r; = (94U}, v;); for all v, € V) . Therefore
(@i, S' @) Gs)r, + Y (g, up), 8'(@)g)s, =0
IEN(J)

We insert zeros to get
0= (0} +V- f(m) S' () ;)
+ > (Ful@ ) - @) -, S'@E)
IEN(5) !
+(O? + V- f@m), (8" @7
+ 30 (F ) = i) - mg, (') = S'GE) -

lEN(3)

<
S—r
I
)
~—
N
S5
SN—r
S—r
ASH
<
g
N

To complete the proof, it remains to show that
(fau(uf,ap) — £(@7) - n;u)S'(@3)
ay ar
= Fuy@,ap) - Fs@) ny + /~ B fi0 (@0 w) / 5" (s)dsdw.
u]" w

Indeed,
(fu(@y,up) — f(@3) -nu)S'(@}) = (fu@y, o) — fu@@y,u}))s' (@;)

= /jl@ fu (@}, w)dwS' (u})
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/ Ou 1 (i, ) (w)dw + / Ou (i, w) (8'(@7) — §'(w)) dw

= Fu(uj,u;’) — Fu(aj,a} / Ow f1 (T / S"(s)dsdw .
O

Remark 3.5. 1) Note that the dissipation term DY in the cell entropy inequality
(27) is positive because of the monotonicity of the numerical flux and the convezity
of S. 2) If p =0, we have I3 ;,I¥; = 0. 3) Also note that, as expected for a high
order scheme, the weak cell entropy like inequality is, in general, not a real cell
entropy inequality in the classical sense. But its use is tmportant to conclude the
following estimates, compare to [13].

Lemma 3.6 (Entropy residual for the semi-discrete DG approximation). Let up,
Up as before. Then, the following identity holds true for all € C§(R? x (0,T), RT)

(28) (Rs(un), @) > Ty +To+ T3+ Ty + Ts + Tg,
where
Ty = // (2:8G@n) + v - Fs(@n)) (3 - ¢),
RIxR+
T - / JGZJ"IE;(]) Fy (@}, a7) — Fs(a}), én ¢)Sﬂ;
=Y [ X (0 + V1@, (@) - S @),
n (o jEJn ’
2= [ X % (@) - @) na (S @) - S @),
n fn JEIMIEN() "
1 JR—
7= 33 (@) @, [ S we)d @) - 6), |
n jeJjn 0 i
Tg = ZZ (ﬂ?(tn) wy "), (SI @l () /Sl )df) ¢h(tn))T<
n jeJn !

where in the definition of Ts and Tg we use the abbreviation
v™(9) = a" (") + 0@ (") — a ().
Note that T is the element residual and 75 is the jump residual in space. T3
and Ty are to be seen as a kind of stability errors coming from the higher order ap-

proximation and T, Tg account for possible discontinuities in time of the projected
function w@p,.

Proof. A summation of the cell entropy like inequality (27) on all elements T; € 7,
and an integration in time leads to
gl

Z/ Z( +I§,j+1:?,j+f<ﬁj)§0-

jeJn
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Next, let us look at the entropy residual. Using integration by parts in time and
locally in space we get

tntl
(Rs(@n), ) = —Z/Z/at @)+ - Fs(i)
n 4n ]EJ"
gntt

+z/zz/ )-ns

n fn JEITIEN())

+X Y [s@e e - s@eeun).

n JEJ"

Noting that due to the conservation property of the numerical flux and since ¢

is continuous we have fo > > s Fy(u},uf)¢ = 0, and by rearranging the
JEJ™MIEN(F)
summation we get.

tntt
(Rs(tn), ¢ —Z/ Z(&s i)+ V- Fs(u )¢)T-
. ¢n jeJ™ 7

gntt

+Z/ > Y (Fa@ ) - F@)) -nso)

n o jEJMEN() it
(29) -3 Y (s@En - s@ e, e, -
n jeJn J

Note that, regarding the last term, since the above sums are reduced to integrals
over the spatial domain, we have decided to split them in sums over T} € 7,
although a"~1(t") € V,ﬁ n_1- Next, using the property (10) of the projections we

obtain -
o3 (e —a e, s @ ), =o.
n jeJn .

Defining v™(#) := w1 (t") +0(a™ (t") —a™~ (")) we can rewrite the last summand
(29) of the residual as follows

=33 (s@men) - @), o))

n jeJ” T
= - (S(a")(t") - S@ ("), 9(tM),
n jEJ" J
+3 3 (@ =@, s @ E)E )
n jeJn !
= T3 (@ -a e, s @ ) - [ s @pass)

= S (@ -, [ $en e G - 66),

n jeJn
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33 (@ -, (@) - [ 860 Fre),

n jeJn T
Finally by comparing the Residual with I}, we arrive at the final result noticing

(Rs(un), ) > (Rs(un),¢)+In
= Th+To+T3+Ty+T5 + Ts.

We conclude by further estimating the T; terms in (28).

Lemma 3.7 (Estimate on the residual). The following estimates on the contribu-
tions to the residual hold true

T+ T+ T5] < |I9'ln |Vl Y >,
n jeJn

s+ Ta+To| < |IS"z=l1lle= D D> 03,
n jeJn

where the local error indicators n;'; are defined in Theorem 2.5 above.

Proof. The goal of estimating the terms T; is to get some power of the mesh size
h from the differences in the test functions. On the other hand, every power of h
that we might gain must be paid for by a higher derivative of either ¢ or S. Since
we will later choose ¢ to approximate certain §-functions and S to approximate
the non-smooth Kruzkov entropies, derivatives of ¢ and S’ will blow up with a
certain rate, depending on the corresponding approximation parameters. The goal
is therefore, to restrict to first derivatives of ¢ and second derivatives of S.

Estimate on T;: To estimate this term, we need some local estimate on the
difference of the test functions. As HV}? is exact on polynomials of degree p = 0,
we get

|Myo (@) (z) = d@))lr;| < hyl[Vlpee(zy)

which finally leads to the estimate on Tj.
Estimate on T»: We get by rearranging the summation in space:

T
T = F’ ~o~ _F- ~ N
b /0 (j,l)egn~/5-( (U, ) — Fi(ug,u;)(¢; — ¢)

_/OT

From here we get the estimate

[ a0 - P )@ - o).

(g:hHeen

tn+1
Tl < 181X [ 2 hallVollieayom /Q,l @) -
. yn (J7l)€£"
gt
< ISVl Y 30 5 [ Xt [ Qi
”]EJ" in 1ENG) g,

where we made use of the monotonicity of the numerical fluxes fj;.



16 A.DEDNER, C. MAKRIDAKIS, AND M. OHLBERGER

Analog to the estimates for 71,75 we derive for T3 and T}:

ttt
Tl < S lemlollm Y X [ 1T = @ llecry / O + V- F(@n),
n JEJ™ in
gt
Tl < S e=lolle= Y 305 [ X ma I - Tlloes,

n ]EJ" in LEN(F)
[ @t wii; -l
Sjl
Estimate on T5 and T§:
|T5| < ||SI||L°°||V¢ tn ||L°°(T)Zzh /|’LL t" —'LNLnfl(tn)L

n jeJn

115" | o= 1™ )| Low 1)

ZZ||~n 1 tn _~n l(tn)”Lm T)/lu tn —ﬂn_l(tn”.
T;

n jeJn

76|

IN

For the last estimate we used

|5 @ () /s' 6))df|

< IS"llz= /0 [an=t(tm) — @ (") + O(@" (") — @ (t"))|de

which gives us the bound on T§ since the function under the integral is monotone
decreasing in 6 due to (11).

The estimate of the Theorem now follows by introducing the notation from
Theorem 2.5. |

We are ready now to complete the proof of Theorem 2.5.

Proof of Theorem 2.5. Lemma 3.7 shows that 4, satisfies the assumption of Theo-
rem 3.3 with ag := 0 and fo, ), % given by the following local contributions

1 11
ﬂO|zj[t",t"+1) = At |Tj|||S ||L°°77;l,j;

1
k — n
e ks

Using the definition of the entropy S = S; (see Def.3.2) we estimate ||S"||pe <
K 5%. Theorem 2.5 now follows from Theorem 3.3 by choosing the regularization
parameters A, d as

P T
PN A — Y s A—
(30) K 6 e

where K := (M + 1)TV( )7 K; = Ks_l(leV(uo) + ko Xsupp(un—u)(T) (R + 1)d)
O
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4. FuLLy DISCRETE RK-DG METHOD AND CONTINUOUS IN TIME EXTENSION

In this section we will briefly present the generalized class of RK-DG methods
that result from the full discretization of the hybrid semi-discrete method of Def-
inition 2.4 analyzed in the previous sections. This is a variation of the RK-DG
methods of Cockburn and Shu [9)].

For the time discretization, the known class of strongly stability preserving Runge
Kutta methods is used, [9]. Thus let us suppose that we can write the semi-discrete
DG method as a system of ODEs for a vector valued function U : (0,7) — RY,
where N corresponds to the degrees of freedom of uy in the space discretization.
Then (5b) can be written in the general form:

d
(31) —U(t) = L(U(1),1).
dt

A general explicit m stage Runge-Kutta method for integrating (31) in time can
be algorithmically represented as

-1
(32a) W= UM+ AtY apLlf, I=1,..,m,
k=1
(32b) L' = LWLt"+qAt) , 1=1,..,m,
(32¢) Uttt = UM+ ALY b LF
k=1

To ensure consistency, the additional constraints Y, by = 1, ¢, = 22;11 air €
[0, 1] have do be imposed. The scheme is characterized by the values by, k = 1,...,m
and a lower triangular matrix aj, I = 2,...,m, k <.

For particular strongly stability preserving (SSP) explicit Runge Kutta methods
we refer to [28] and to the review articles [14, 27].

The Runge-Kutta method, as presented above, gives only approximations at the
discrete time steps t™. In order to obtain a continuous approximation in time, we
seek for a polynomial approximation Uy, in time, such that in each interval [t7, "]
the Runge-Kutta scheme can be written in the form

SUMD) = La(U(0), 1)

A way to construct such polynomials is given by the so called natural continuous
extension (NCE) of Runge-Kutta methods, introduced by Zennaro [29]. Since this
construction is used in the numerical examples we present it below.

The main result of [29] can be summarized as follows. Each m-stage Runge
Kutta method of order 7/ has a natural continuous extension U} of polynomial
degree p with % < p < min{m*,m}, where m* is the number of distinct values
of the coefficients ¢;, in the sense that there exists m polynomials b; € P?(0,1),
l=1,...,m such that

Un(t") = U, Un(t™™) =U"",

(33) Un(t" +sAt) = U"+AtY bp(s)L*, 0<s<1.
k=1
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Let us suppose that Uy, is given by the m-stage NCE Runge Kutta scheme (for
an explicit construction see [29]). From (33) we get

(34) Uup(t") = U™,
(35) (;itUh(t) = Zb;(%)ﬂ“, t e[t "]

Defining the discrete Operator Ly, as

Uh; ib t_tn a
k=1

we have reached our desired goal. The Runge Kutta method now writes

(36) U™ =0, ST = L)

Let us further define the fully-discrete RKDG-method in a form equivalent to
(36). Starting from Definition 2.4 we first define the local operators L7 by

B7) (L} (un®),o)lry = (Ff),Vos)ry = D (Fuuf (@), uf () v5)s,05

lEN())
for all T; € Tp,n=0,...,N,v, € V'

and L} through (L"(up(t)),vs) := eXJ: (L} (un(t)), vi)l;
jETn

Using the notation from above, the fully-discrete generalized Runge Kutta—DG
method reads.

Definition 4.1 (Fully-discrete generalized RK-DG approximation). Let an m-
stage Runge Kutta method be given according to (32a) (32b), (32c¢) and let us
suppose that a projection Ag’t with the properties (9), (10) is given. Furthermore,
let the natural continuous extension of highest possible degree p be given according
to (33). Let us denote AZ’k = AZ’t"+C’“At fork=1,...m

The function Uy is called o generalized fully-discrete RK-DG approximation of
(1a)-(10), if for U; " = Az’o(ug) it satisfies:

Forn=0,..,N —1, Uy := Up|gn 4n+1) € C" (t",t"“;V,Zn) is defined through

(38%)  URE") = ART(URTUEM),
-1

(38b) (W v5) = (UPE™),05) + At Y an (L AR (WF)),05),
k=1

t—t" n, n,
RS W), v),

(38c)  (UF(t),05) = (UP(t™),05) + Aty b

for all v; € P, j € J™,t € [t",t"T].

Thus, with the definition of L}, the fully-discrete generalized RK-DG approzima-
tion satisfies on each time slab (1™, t”+1) the ordinary partial differential equation

(39)  (BUN(t) Zb' R AP WR)),on), ¥ on € Vit
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Remark 4.2. In our numerical experiments we used polynomial degree p=1,2,3
for the space discretization combined with the NCE-Runge-Kutta method of the same
degree. In [29] extensions of Runge-Kutta methods are constructed with optimal
order up to p = 4 but for p =3 and p = 4 it is necessary to include a stage reuse
procedure to obtain the desired order. In our examples we have included stage reuse
since this does not increase the computation cost of the scheme.

5. CHOICE OF THE PROJECTIONS AND ADAPTIVE STRATEGY

In Definition 2.1 we introduced a class of semi-discrete DG—methods for arbitrary
limiting projections Ag’t and computational grids. In this subsection we are going
to describe specific choices of projection operators that are motivated by our a—
posteriori error estimate in Theorem 2.5. Furthermore, we give an adaptive strategy
for local mesh refinement based on the error estimate.

The evolution of the solution in the interval (¢, #"*!] is described in the following
algorithm. We start with an initial guess 7™ for the grid and AZ’t for the limiting
projection (¢ € (t*,t"+1]).

e Given: Grid 77, projection A}"* for ¢ € [t",¢"+!] and u™(t", z)
e do

(1) Let 77 = 7™ and A" = AP* for ¢ € [t", "]

(2) Compute u™(t,z) for t € (t",#"*] on 7™ using A}

(3) Compute indicators and new limiting projection AZ’t on T™

For j € J" compute

- p} R, RS (cf. Corollary 2.6)
— AP* for t € (#",¢"+1] (cf. Sec. 5.1)
~ ~ n+1
- Ry = I AR )
J

(4) Compute error indicator for interval (t*,t"*!] on T™:
R =23 1 p}( ﬁa’j+Rg,j+Rxﬂ.) i
(5) Refine grid: 7" — 7™ and project A} for ¢ € (¢, ¢"1] onto 7"
e while R" > TOL" ~
e define 7"t by coarsening 7" so that
Ant™t nn n—snt1 Xnt" ' nin n
R 423 g p0(JIARY T up(tnt?) — Im=n bt ARE T 2 (17+1)]) < TOL

J
~ n+41 o gn1 ~ ~
o define APTH0T = LAY and APTH for ¢ € (#71, ¢712] on T
using A7
The algorithm is based on the assumption that

An,t An,t
Kihj + K> ke{;rllg}(v(j)} ||AZ uy — AZ UZ||L°°((t",t"+1)><Tk) <
.t ,t
Kih; + K> ke{;rllglx\f(j)} ||AZ uy — AZ u’;clllLoo((tn’tn+1)ka).

With the restrictive choice A}"*(v) = ¥ we have max;, [|A} uf — A} *u?|| L~ = 0 and
therefore p7 = K1h; as in the first order case. In fact with this limiting operator the
DG scheme reduces to the first order finite volume scheme for which the convergence
of the error indicator can be shown rigorously for h — 0. Therefore, with a suitable
choice of 7™ the iteration (1)—(5) always terminates and in practice our scheme
requires hardly any iterations.
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Note that from our strategy it follows that

> op(Ri, + RE, + R}, ) < TOL™

jedn
Thus, the error |[(u — Up)(T)||L1(Br(z0)) 8 bounded by some prescribed tolerance
TOL which satisfies > "TOL"™ < TOL. This is summarized in the following Lemma.

Lemma 5.1. Let ny denote the global error estimator from Theorem 2.5 and let
a prescribed tolerance TOL be given. If the computational mesh is adapted due to
the strategy described above using the methods described in the following subsections
then it follows that

(39) mn < TOL.

Thus, the adaptive strategy together with Theorem 2.5 yields a rigorous control
on the error ||(u — ﬂh)(T)||L1(BR($O)).

5.1. Choice of the projection operator. Our algorithm is based on an initial
guess for the projection operator which we denote with INXZ’t. This is used to define
the final projection operators A:’t in the generalized RK-DG method 2.4 or 4.1.
We are now going to introduce two different approaches for constructing AZ’t. The
first approach is based on a restriction of the gradients of the approximate solution
based on the error estimate in Corollary 2.6. The second approach is a p-adaptive
projection where the local polynomial degree of the approximate solution is chosen
in accordance with the error indicators in Corollary 2.6. Together with the local
mesh adaption strategy that we will discuss in the next subsection, both methods
are then used in an hp-adaptive manner as discussed in the introduction to this
section. The operator AZ’t is always constructed on a fixed mesh 7™ and then
prolonged /restricted onto a modified mesh in such a way that refinement of cells
does not change the projected function.

The goal of the choice of the projection ﬂZ’t is twofold. On the one hand
side we need a projection or limiting of the solution in order to stabilize the
scheme at least in the case of non-linear conservation laws in the vicinity of dis-
continuities. On the other hand, the factor p} should be in O(h;) — in other

words ||A?’tuh - A;"tuh||Lm((tn,tn+1)XTj) should at least be of the order of hj;.
Together with reasonable assumption on the boundedness of the residual terms
R7 ;, RS ;, R} ; this requirement guarantees the convergence of the errors estimate
np, for h — 0. We can expect that in regions where the solution u is smooth the
stated requirement is met even if we choose A?’t = id, whereas near discontinuities
the term |[up, — up||L~ grows without bound. The projection should therefore only
be active on mesh cells near discontinuities and not in smooth regions with steep
gradients. Thus, we suggest to define a projection parameter A, as
(40) AR(E) == A LN A= — o
(hi+zpm (R ;+RE ;) P

and to ensure that our projection operators yield a solution with the property

(41) [[@3 (-, t) = a3 (- D)L ;) < AT (D).
We expect that the upper bound A? is of order h; near discontinuities, whereas

_ 1 [
it is of order h; **' in smooth regions. As the error |[u}(-,t) — u} (-, 1)L~ (1))
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is expected to converge with order h; in smooth regions and to remain constant
near discontinuities, the upper restriction leads to a projection of the solution near
discontinuities and at the same time |[u}(-,t) — @} (-,?)||L=(1;) would be at least
of order O(h;). The bound (41) dictates the manner in which we construct the
operator A?’t from a given projection A]T-"t.

In the sequel we propose two possible choices for the projection AZ’t in one space
dimension, which both satisfy the upper bound (41) for given limiter function .
In order to define the methods, let ¢;,l = 0,...,p denote the orthogonal basis of
Legendre polynomials on the cell T} := (x;_1/2,2;41/2), such that ¢; € Py(T};). We
then have the local expansion

(42) Wz, t) = Y ul (Opu(a),
=0

where o = 1 and thus u (-, 1) = uj(?).

5.1.1. P-adaptive method in 1D. Let 1 < [* < p denote the maximal index such
that

-
Zuﬁl(t")cpl(x) < A(t"),  for all z € Tj.
=1

Then, the p-adaptive projection on the cell T} is defined through
I

(43) A (un (1) ==Y ufy (i (x).
=0

5.1.2. Derivatives restriction method in 1D. For fixed t € [t", "] let 1 <I* < p
denote the maximal index such that

-
D oul (@) < AF(),  for all 7 € T
1=1

In contrast to the p-adaptive strategy, we allow here that the derivative of degree

I* + 1 is not switched of completely but is reduced in such a way that the bound
(41) still holds. In particular, we define

"
(44) AP () = Y ufi(O9i(@) + ey () pre 41 (2)

—n o
where @7,. ,,(t) is given as

l*
oy (1) = sgn(ufe 41 (8) min{laf e 1 (0, A7 0) = 11D wfu @)l oy }-
1=0

After the refinement of a cell T} or the coarsening of a set of cells (Tj,)%_, the
operator 1~\Z’t has to be modified to operate on the new grid. Both of the choices
described above require the definition of A7 on the new grid cells:

e refinement (T; — (T}, )L_,): let AL = %)‘?
e coarsening ((T},),_, = Tj): let A} = Ei:o A
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5.2. Adaptive strategy for local mesh refinement. In this subsection we de-
scribe an adaptive strategy for local mesh refinement or coarsening that is based on
an equal distribution strategy of the error indicator 7 of Theorem 2.5. However,
there are two significant modifications of the equal distribution strategy when com-
pared with the strategy presented in [20] or [24]. The first modification is that we
only distribute the error among those elements that significantly contribute to the
error and secondly we also incorporate the projection error from mesh coarsening
into the adaptive strategy. These modifications are of minor importance for smooth
solution but result in quite different adaptive convergence behavior for problems
with discontinuities. In detail, the new adaptive strategy is given as follows.

Using the notation of Corollary 2.6, let us define for a prescribed tolerance TOL
the local error indicators 7; for some given © € (0,1) as

M
0 — .
nmM) = ey o™

2T M non n ~
MO = o N MR, + BE, + )

Atn (@ TOL™)2"

where we again have used the abbreviation RX’ o= [laptt (t"“)—AZ’thrl uf (tv ).
j
The operator AZ’t"H is again a suitable projection operator defined on the mesh
T, used to stabilize the scheme and to guarantee that pj converges for h; — 0.
The adaptive strategy at the time t"*! is then given as follows. For a € (0,0.5),
M € N let us define the set of significant elements as
IH(M) :={j € I"| nj(M) > a},

and let M™ implicitly be defined through M™ = |I?(M™)| where | - | denotes the
cardinality of the set. We define ™ as

ehi= Y (D)
JEIM\IP(M™)
and suppose that « is chosen small enough to ensure e” € (0,0.5).
We then define for given 8 € (0,1) the sets
L= A{Tyl p(M™) > (1 =€}, L= {Tj nj(M") < (1 - ")}

and mark all elements of the set I, for refinement and those in the set I. as
candidates for coarsening. Coarsening of the mesh leads to an additional pro-
jection error of the approximate solution that contributes to the indicator R} ;-

We split this error into two parts according to R} ; < R,’{’j + Ry ; with R, =

~ n+1 ~ n+1
1A uf (") — mronti AR u(t"*1)| using the operator TI" ™! to de-
T;

note the L2 projection from one grid to another. We calculate the error terms
ne i (M™) := g (M™) + %pﬁ?% for all T; € I, and define the updated
set I, as

I :=A{T; € L| n?;(M™) < B(1 — ™)}

and mark all elements of the set I. for coarsening. Finally, all elements in the set
I, are refined, until the refinement set I,. is an empty set. Then, all elements of the
set I, are coarsened.
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5.3. Evaluation of the semi-discrete error indicators. In Theorem 2.5 we
give an a—posteriori error estimate for the semi-discrete DG-method from Definition
2.4. Conventionally, Runge Kutta time discretizations that are used in practice only
provide values for the approximate solution at the discrete time steps t™. Thus,
our error indicators could not be evaluated continuously in time. In order to give
a suitable interpretation of the fully discrete Runge-Kutta solution (see Definition
4.1) we use the natural continuous extension as defined through equation (33).
Thus, the approximate fully discrete solution is continuous in time on each time
slab [t", "] and all contributions of the error indicators 77*; of Theorem 2.5 are
computable.

6. ADAPTIVE NUMERICAL EXPERIMENTS IN ONE SPACE DIMENSION

In this section we examine numerically the RK-DG-methods defined through
Definition 4.1 together with the projections from Subsection 5.1 and the local adap-
tive grid refinement from Subsection 5.2. We study the convergence behavior of
the estimator 7y, from Theorem 2.5, as well as the convergence of the error between
the RK-DG-approximation and the exact solution itself. As test problems, we
look at a linear transport problem with smooth and discontinuous regions in the
solution. This example is a scalar prototype for contact discontinuities. As a sec-
ond very challenging example we chose the Buckley—Leverett equation. Here, the
flux function is non-convex and thus the solution consists of compound waves. For
such fluxes there exist several weak solutions that are compatible with a single en-
tropy, but only one of those solutions is the unique entropy solution in the Kruzkov
sense. It is well known that higher order numerical schemes may have difficulties
in selecting this unique Kruzkov entropy solution (see also [2] and [22]).

In order to compare the efficiency of the selected RK-DG-methods we are going
to plot the error estimators and errors against the overall number of grid cells
Moo (Tr) = Zle ZTj eTn 1. As M, is available for uniform refined grids, as
well as for adaptively refined grids, and as M, is proportional to the degrees of
freedom for fixed polynomial degree p, this is a good way of comparing our adaptive
method with standard approaches on uniform grids. Furthermore, let us define the
experimental order of convergence of a grid dependent quantity ej as

(45) EOC(eq_p) := log(%)logl (%)

Note that a convergence rate O(h*) on uniform grids in one space dimension cor-
responds to EOC (e2n—1) = §, as a refinement from grids with cells of size 2h to
grids with cells of size h leads to two times the number of grid cells per time step
and two times the number of time steps. This yields Mo, (Tr) = 4Meot(T2n)-

6.1. Linear transport equation. As a first numerical example we look at the
linear transport equation
Ou+ad,u = 0,
u(-,0) = wuo()
with the constant transport velocity a = 2. For fixed initial data the solution u is
then given by

u(z,t) = ug(z — at) .
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FIGURE 1. Comparison of the approximate solutions obtained
with the p—adaptive method (left hand side) and the derivatives
restriction method (right hand side) on adaptively refined grids
with p = 1 (top) and p = 2 (bottom). For both computations
we used the prescribed tolerance TOL = 0.5. The approximate
solutions are compared with the exact solution at 7' = 2.0.
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FiGure 2. Comparison of the approximate solutions obtained
with the derivatives restriction method for p = 2 with TOL =1
(right hand side) and TOL = 0.25 (left hand side) on adaptively
refined grids. The approximate solutions are compared with the
exact solution (solid line) at T' = 2.0.

We study the setting on [—1,1] x [0,2] with periodic boundary conditions for the
following non-smooth initial data

1—(z+1.5)%, forz < —0.5,
ug(z) := < sin((z + 0.5)7), for — 0.5 <z < 0.5,
1—(z—0.5)% for0.5< =,
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F1cURE 3. Convergence study for our new schemes on uniformly
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FIGURE 4. Comparison of the derivatives restriction method
with DG-approximation of Cockburn and Shu and with DG-
approximation without limiting projections.

Since £ — 2a = x — 4 is equal to z on a [—1,1] periodic domain it follows that
u(z,2) = ug(z).

We first compare the two projection methods described in Subsection 5.1 for
p=1and p = 2 (ref. Fig. 1). All results are computed with the adaptation
strategy from Subsection 5.2 with TOL = 0.5. In Fig. 1 both the exact solution
and the approximate solution are shown together with the grid density function.

The comparison of the projection methods for fixed polynomial degree shows
that both methods lead to a good resolution of the smooth region as well as of the
discontinuity. The p-adaptive method (Fig. 1(left)) produces slight overshoots in
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F1GURE 5. Convergence study for the new p—adaptive method
(top) and the derivatives restriction method (bottom) on adap-
tively refined grids for p = 0,1,2. The value of the indicator 7y
are plotted on the left hand side, while the true error is plotted on
the right hand side.

front of the discontinuity but these decrease on finer grids. The refinement strategy
together with the derivatives restriction method produces a slightly finer grid in
the region of the discontinuity whereas the grid is coarser in the smooth regions.

A comparison of different polynomial degrees for fixed projection scheme shows
the clear advantage of the quadratic polynomials in the smooth region. The finest
grid resolution in the region of the discontinuity is 4 times larger for p = 2 and the
grid is also considerably coarser in the smooth region. For example the calculation
with the derivatives restriction method and p = 1 produces a final grid with 70
elements and an error of 0.028 whereas the final grid with p = 2 has only 30 cells
while the error is about the same. As a consequence the overall number of grid
cells M, (7p) is more than five times larger for p = 1.

Results with p = 2 and the derivatives restriction method for different values of
TOL are shown in Fig. 2. It can be clearly seen that the grid is hardly refined in the
smooth regions of the solution whereas the fineness in the region of the discontinuity
and also around the kink increases for smaller tolerance values. The coarsest grid
level corresponds to a grid with 13 cells. With TOL = 1 only 7 cells are added to
the final grid — two in the region of the kink and five in the shock region. With
TOL = 0.25, 30 cells are added — about 50% of which are located in the shock
region.

A comparison of the efficiency of our new method on uniform grids for p = 0,1, 2
is shown in Fig. 3. The increase in efficiency due to an increase of the polynomial
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TABLE 1. Experimental order of convergence for the error and
the estimator of the new p—adaptive method and the derivatives
restriction method on adaptively refined grids.
computational data coincide with those of Fig. 5.

The underlying

| derivatives restriction method ||

p—adaptive method

p | EOC(eu—r) | EOC(Mu—1) EOC(er—n) | EOC(na—1)
0 0.292 0.193 0.292 0.193
1 0.431 0.228 0.476 0.368
2 0.544 0.342 0.515 0.450
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FIGURE 6. Efficiency study for the new p-adaptive method (left
hand side) and the derivatives restriction method (right hand side)
on adaptively refined grids for p = 0,1,2. The efficiency indexes

N /TOL are plotted versus M.

degree can be clearly seen. Furthermore the difference between our two projection
methods is hardly significant. For p = 1 there is hardly any difference and also
for p = 2 there is no clear indication of which method is the more efficient. In
Fig. 4 we included the DG-approximation of Cockburn and Shu and the DG-
approximation without any limiting projections for p = 1. For p = 1 our projection
scheme is comparable to the DG-scheme without any limiting (but note that the
scheme without projection is only stable for linear problems). Compared to the
Cockburn and Shu version of the DG-method our scheme shows a lower efficiency;
but we designed our scheme to be used in combination with h-adaptivity based on
a rigorous a-posteriori analysis. The Cockburn and Shu scheme can not be used
with our adaptive strategy since the indicators do not converge for this scheme and
to our knowledge no rigorous error control is available for it. An error control for
hp—adaptive DG—methods is the goal of this paper, not an increase in efficiency on
uniform grids. Since we cannot compare our method with the Cockburn and Shu
scheme on locally refined grids using the strategy presented in Subsection 5.2, we
refrain from further comparisons with this method.

Next we compare our adaptive schemes for p = 0,1,2. In Fig. 5 the error and
the error indicator 7, are shown, while in Tab. 1 the convergence rates as defined in
equation (45) are given for the error EOC(eg_,;,) and the estimator EOC (ng_4)-
The error and the estimator show better convergence rates for higher polynomial
degree. The convergence rates of the error are even better than what we expect to
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FIGURE 7. Comparison of the approximate solutions obtained
with the p—adaptive method (left hand side) and the derivatives re-
striction method (right hand side) on adaptively refined grids with
p =1 (top row) and p = 2 (bottom row). For both computations
we used the prescribed tolerance TOL = 0.5. The approximate
solutions are compared with the exact solution at 7' = 0.4.

be optimal for discontinuous solutions on uniform computational grids. On uniform

grids with mesh size h the optimal rate is supposed to be h5%2 which corresponds
to EOC(eg_pn) = %% (i-e. 0.250, 0.333, 0.375 for p=0,1,2). Although the con-
vergence rate of the indicator differs from the convergence rate of the error the
ratio between the prescribed tolerance and the indicator is about constant. In the
optimal case this ratio should be close to one. Our adaptive strategy leads to an

efficiency index of about 0.5 — 0.8 (cf. Fig. 6).

6.2. Buckley—Leverett problem. As a second example we look at the Buckley—
Leverett equation which is a one dimensional model for two phase flow in porous
media where capillary pressure effects are neglected. The unknown variable u :
(—=1,1) x (0,0.4) — R is the saturation of the wetting phase within a two phase
mixture. It satisfies the non-linear conservation law
i +8,f(w) =0, on(~1,1)x (0,0.4),
u('70) = Ug, On (_17 1)7

where the fractional flow rate f is given as

fls) =

U2

u? 4 %(1 —u)?’
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with the derivatives restriction method for p = 2 with TOL = 0.25
(right hand side) and TOL = 0.125 (left hand side) on adaptively
refined grids. The approximate solutions are compared with the
exact solution (solid line) at T' = 0.4.
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FI1GURE 9. Convergence study for our new schemes on adaptively
refined grids.

We look at this problem for the following initial data
1, forxz < —0.6,
ug(z) :==<¢ 0, for —0.6 <z <0.2
1, for 0.2 < .
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FI1GURE 10. Solution of the unlimited DG—-scheme for p = 1 on
uniform grids with 200 (left) and 1600 (right) grid cells. The figure
demonstrates that the unlimited DG-scheme converges against the
wrong solution for the Buckley—Leverett problem.
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FI1GURE 11. Comparison of the new adaptive derivatives restric-
tion scheme with and without incorporated coarsening projection
error. Only the part of the solution is plotted corresponding to the
left Riemann problem at 7" = 0.4 with TOL = 0.125 in both cases.

Thus, the solution of our Buckley—Leverett problem consists of the solution of two
distinct Riemann problems for ¢ smaller than some critical time 7 > 0.4. The
solution of each Riemann problem is a composed wave consisting of a rarefaction
wave and an attached shock and the exact solution is known up to solving an ODE
for the rarefaction waves.

In Fig. 7 we plot the exact solution together with the approximation using our
adaptive strategy for p = 1,2. Since the structure of the solution away from the
discontinuities is far simpler than in the advection problem studied above, the ad-
vantage of the quadratic Ansatz functions is not evident. The grid density function
hardly depends on the polynomial degree since almost all grid points are located
in the shock regions. Only the kinks at the beginning of the rarefaction waves
lead to additional slight refinement. Through a decrease of the tolerance value for
the refinement indicator the difference in the resolution of the smooth regions can
be demonstrated (cf. Fig. 7). Since the highest grid resolution produced by our
refinement strategy is the same for p = 1 and p = 2 and the approximation error
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FIGURE 12. The figure shows the influence of the incorporated
coarsening projection error on the efficiency of the adaptive algo-
rithm. The error is plotted versus M, for the derivatives restric-
tion scheme with and without incorporated coarsening projection
error in the mesh adaption strategy.

is dominated by the shocks, the p = 2 version of the DG method does not lead
to a more efficient scheme as can be seen from Fig. 9. This must be attributed to
the smaller CFL stability restriction required in the higher order schemes and the
resulting smaller time-steps. A more complicated structure of the solution — as
can only be found in systems in higher space dimension — is required to demon-
strate the advantage of a hp-adaptive strategy for non-linear conservation laws with
discontinuous solutions.

The results so far show that our adaptive strategy and our projection methods
both based on the error estimate from Theorem 2.5 lead to good schemes both for
linear and non-linear test problems. In Fig. 10 we demonstrate the necessity of using
a projection mechanism in the case of non-linear conservation laws. Without any
projection mechanism the DG method clearly does not converges to the Kruzkov
entropy solution but to some other solution where the shocks are detached from the
rarefaction wave. Both our projection methods, although not monotone, lead to
DG schemes which converge to the right entropy solution. Compare with [2] where
computational convergence to the entropy solution is achieved through alternative
adaptive methods.

We conclude our numerical experiments with results demonstrating the advan-
tage of including the coarsening error in the indicator. Results computed with and
without using this “jump” indicator are shown in Figs. 11 and 12. Including the
error due to coarsening leads to a higher grid resolution around the kink at the left
side of the rarefaction waves. Without this indicator the grid is coarsened to such
a degree that the rarefaction wave is not sufficiently resolved and the convergence
rate of the adaptive scheme is severely reduced.
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7. CONCLUSION

We have proved an a posteriori error estimate for a class of semi-discrete Discon-
tinuous Galerkin methods on adaptively refined computational meshes (see Theo-
rem 2.5 and Section 3). The estimate provides a rigorous error control and is used
for the design of stabilizing limiting projection operators (see Section 5.1) as well
as for the design of a local grid adaptation strategy (see Section 5.2). Numerical
examples in one space dimension demonstrate that the resulting adaptive schemes
converge with higher order compared with the standard first order method with
piecewise constant Ansatz functions. In addition it was shown that also the error
estimator 7, from the a posteriori Theorem 2.5 converges with higher order for
higher order methods. Finally, the principle ideas of the design of projection opera-
tors and the adaption strategy is not limited to the one dimensional case and gives
rise to promising results also in multi space dimensions. The multi dimensional
case and a study of the more involved fully discrete case is left for further studies.
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