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Abstract. We approximate the solution of initial boundary value problems of semilinear
parabolic equations by time-discrete discontinuous finite element methods. We propose
an approach leading to optimal order-regularity a priori error bounds. Our approach is
based on techniques developed for the numerical approximation in bifurcation theory for
mildly nonlinear elliptic equations and on the stability analysis of the method for linear
parabolic problems with mesh dependent norms.
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1. Introduction

In this note we propose an approach leading to optimal order-regularity a priori error
bounds for the discontinuous Galerkin approximation of nonlinear evolution problems:

(1.1)
u′ + F (u) = 0, 0 < t < T,

u(0) = u0.

We consider a rather general weak abstract setting for both (1.1) and its Galerkin
approximation in time which serves as a tool to present our results in clarity without
introducing fully discrete approximations. In particular, let H1,H2 be two Banach
spaces such that H2 ⊂ H′1 and F : H1 → H′2 a (possibly) nonlinear operator. We seek
u : [0, T ] → H1 such that u(0) = u0, u′(t) ∈ H′2 and the differential equation in (1.1)
is satisfied a.e. in (0, T ). We will assume that (1.1) possesses a unique solution that is
sufficiently regular. More specific assumptions on the abstract problem (1.1) will be
cited in the sequel. Our results apply, in particular, when (1.1) is a formulation of
a semilinear parabolic problem. We have chosen to first present them in an abstract
setting because other applications are possible and also in order to better illustrate the
proposed approach.

The discontinuous Galerkin method is formulated as follows: Let 0 = t0 < t1 <
· · · < tN = T be a partition of [0, T ], In := (tn−1, tn], and kn := tn − tn−1. We seek
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approximations to u in the space of piecewise polynomial functions of degree at most
q,

S1
k := {ϕ : [0, T ] → H1/ ϕ|In(t) =

q∑

j=0

χj tj , χj ∈ H1};

the elements of S1
k are allowed to be discontinuous at the nodal points tn, but are taken

to be continuous to the left there.
Given a Banach space V, we denote by Lp(V ) the space Lp((0, T ); V ), 1 ≤ p ≤ ∞,

with the standard definition of the corresponding norm; H1(V ) is defined analogously.
The Galerkin approximation uk ∈ S1

k to the solution u is defined by

(1.2) b(uk, ϕ) = 0 ∀ϕ ∈ S2
k,

with

(1.3)

b(v, ϕ) :=
N∑

n=1

∫

In

[
(v′, ϕ) + (F (v), ϕ)

]
dt

+
N−1∑
n=1

(vn+ − vn, ϕn+) + (v0+, ϕ0+)

where

S2
k := {ϕ : [0, T ] → H2/ ϕ|In(t) =

q∑

j=0

χj tj , χj ∈ H2},

vn := v(tn) and vn+ := lims↓0 v(tn + s). Let vN+ := 0. Note that (·, ·) denotes the
duality pairing of either H′i and Hi, i = 1, 2, and, in view of our assumptions, the
form b(·, ·) is well defined on S1

k × S2
k. Note that when discretization in space is also

considered then method (1.3) reduces to the standard formulation of the discontinuous
Galerkin method where

Shk = S1
k = S2

k := {ϕ : [0, T ] → Vh/ ϕ|In(t) =
q∑

j=0

χj tj , χj ∈ Vh}

and Vh is an appropriate finite element space.
The discontinuous Galerkin method for dissipative evolution problems, cf. [J], [EJT],

is a time finite element discretization method. When combined with appropriate inte-
gration rules it reduces to the classical Runge-Kutta-Radau time discretization schemes.
For the analysis of this method when (1.1) is linear and dissipative cf. [Th] and the
references therein. This method can be used as a model for the investigation of proper-
ties related to adaptive computations for parabolic problems, [EJL]. In this direction,
one of the results we are interested in is the derivation of optimal (order and regular-
ity) a priori error estimates, cf. [EJL] and in the fully discrete case [EJ2], [MB]. Such
optimal results are established in [EJL] for linear parabolic problems for any q. In the
fully discrete case cf. [EJ2] for a priori bounds in L∞(L2) and in L∞(L∞) (q = 0 or
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q = 1), and [MB] for estimates in L2(L2). (All available results in L∞(L2), as well as
the results in Section 3 below, are optimal up to a logarithmic factor.) For nonlinear
equations such estimates are available in the case of a nonlinear parabolic problem but
only for q = 0, [EJ1]. In [EL] a semilinear parabolic problem is considered with the
discontinuous Galerkin method combined with numerical integration and, therefore,
the a priori estimates are not optimal in the above sense.

In [Jo], Johnson analyzes the discontinuous Galerkin method for nonlinear dissipative
o.d.e’s, see also [E]. For the convergence of the discontinuous Galerkin method in a non
parabolic case cf. [KM].

In the sequel we will present an approach yielding a priori estimates for the discon-
tinuous Galerkin approximation for the nonlinear problem (1.1) in abstract form. In
Section 2 we establish the abstract results and in Section 3 apply them to a semilinear
parabolic equation; in Section 4 we briefly discuss the limitations of the approach and
also possible extensions. The main idea, motivated by the finite element analysis in
bifurcation theory, [CR], [RP], [CaR], is based on the central Lemma 2.1, [CR], and
on the analysis of the stability of discontinuous Galerkin methods by mesh dependent
norms [MB]. The proposed approach is linked to the duality technique, cf. Section 3
and Lemma 3.1, leading to a priori estimates in the linear case, cf., e.g., [EJL], [Th],
and considered for certain nonlinear problems in [EJ1] and in [JRB].

2. Abstract formulation

Our intention is to rewrite the variational problem (1.2) in operator form:

(2.1)
Find uk ∈ X such that

G(uk) = 0.

For appropriate Banach spaces (X, ‖ ·‖X), (Y, ‖ ·‖Y ), and Z = Y ′, G will be considered
a nonlinear operator from X to Z, G : X → Z. We will use the following result from
the error analysis in bifurcation theory for mildly nonlinear elliptic equations, cf. [CR],
to show existence of uk and to derive estimates for ‖u− uk‖X .

Lemma 2.1. Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be Banach spaces. Let a map G : X → Z
be differentiable, DG(v) : X → Z be continuous (for v ∈ X), and, for a given ṽ ∈
X, DG(ṽ) be an isomorphism of X onto Z. Let

ε := ‖G(ṽ)‖Z , γ := ‖DG(ṽ)−1‖L(Z,X),

and, with α := 2γε, let B(ṽ, α) := {v ∈ X : ‖ṽ − v‖X ≤ α} and

L(α) := sup
v∈B(ev,α)

‖DG(ṽ)−DG(v)‖L(X,Z).

Assume that 2γL(α) < 1. Then, there exists a unique solution u of the equation G(u) =
0 in the ball B(ṽ, α); moreover, we have

‖u− ṽ‖X ≤ γ

1− γL(α)
‖G(ṽ)‖Z . ¤
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Let ṽ ∈ S1
k denote the interpolant of the solution u of (1.1) defined by

(2.2a)
ṽ(tn) = u(tn)∫

In

(ṽ, ϕ)dt =
∫

In

(u, ϕ)dt ∀ϕ ∈ Pq−1(In;H′1)

with Pq−1(In;H′1) the space of polynomials on In of degree at most q−1 with values in
H′1, cf., e.g., [Th]. Further we introduce the following projection into S1

k : Let P g ∈ S1
k

denote the projection of g ∈ L2(H1) defined by

(2.2b)
∫

In

(P g, ϕ)dt =
∫

In

(g, ϕ)dt ∀ϕ ∈ Pq(In;H′1) .

Stability assumptions. We assume here that b can be defined in X × Y, such that,
for v ∈ X,

|b(v, w)| ≤ C(v)‖w‖Y ∀w ∈ Y .

A choice of X and Y that satisfies the above continuity assumption and can serve as
a model in the abstract analysis in this section is, e.g., X = (S1

k, ‖ · ‖Lp(H1)), Y =
(S2

k, ‖ · ‖W p′ (H2)
), 1

p + 1
p′ = 1 where ‖ · ‖W p′ is an appropriate discrete Sobolev norm on

functions of Lp′ , cf. (3.3), (3.4) for a specific choice. Nevertheless, the only fact for X, Y
that is of importance in this section is that they are based on the finite dimensional in
time spaces S1

k and S2
k respectively.

Next we assume that DF (ṽ) : X → Z := Y ′ is well defined and the linearized
problem around ṽ ∈ S1

k has the following stability properties: The bilinear form
b′(ṽ; ·, ·) : X × Y → R,

b′(ṽ; w, ϕ) =
N∑

n=1

∫

In

[
(w′, ϕ) + (DF (ṽ)w, ϕ)

]
dt

+
N−1∑
n=1

(wn+ − wn, ϕn+) + (w0+, ϕ0+),

is continuous,

(Aα) |b′(ṽ; w, ϕ)| ≤ Cα‖w‖X ‖ϕ‖Y ,

and satisfies the inf − sup condition,

(Aβ) sup
ϕ∈Y, ϕ 6=0

b′(ṽ; w, ϕ)
‖ϕ‖Y

≥ Cβ‖w‖X .

Then we have
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Theorem 2.1. Let (A) be satisfied, and assume that

(2.3) ‖P [ [DF (ṽ)−DF (v) ]w ]‖Y ′ ≤ Cγ ‖w‖X ‖ṽ − v‖X

and

(2.4) Cγ C−2
β ‖P [ F (ṽ)− F (u) ]‖Y ′ ≤ 1

4
for k ≤ k0.

Then, for k ≤ k0, there exists a locally unique solution uk of (1.2) such that

(2.5) ‖uk − ṽ‖X ≤ 2
Cβ

‖P [F (ṽ)− F (u) ]‖Y ′ .

Here P denotes the projection defined in piecewise sence by (2.2b).

Proof. We will use Lemma 2.1. For w ∈ X, let G(w) ∈ Y ′ be defined by

< G(w), ϕ >= b(w, ϕ) ∀ϕ ∈ Y

with < ·, · > denoting both the inner product in L2(H2), < v, w >:=
∫ T

0
(v, w)dt, and

the duality pairing between Y ′ and Y. Next, we will evaluate ‖G(ṽ)‖Z . For ϕ ∈ Y, we
have

< G(ṽ), ϕ > = b(ṽ, ϕ)

=
N∑

n=1

∫

In

[
(ṽ′, ϕ) + (F (ṽ), ϕ)

]
dt

+
N−1∑
n=1

(ṽn+ − ṽn, ϕn+) + (ṽ0+ − u0, ϕ0+)

= −
N∑

n=1

∫

In

(ṽ, ϕ′) dt + (ṽn, ϕn)− (ṽn−1, ϕn−1+) +
∫ T

0

(F (ṽ), ϕ) dt(2.6)

= −
N∑

n=1

∫

In

(u, ϕ′) dt + (un, ϕn)− (un−1, ϕn−1+) +
∫ T

0

(F (ṽ), ϕ) dt

=
∫ T

0

(u′, ϕ) dt +
∫ T

0

(F (ṽ), ϕ) dt

=
∫ T

0

(F (ṽ)− F (u), ϕ) dt =
∫ T

0

(P [F (ṽ)− F (u)], ϕ) dt,

i.e.,

(2.7) ‖G(ṽ)‖Z = ‖P [F (ṽ)− F (u) ]‖Y ′ .
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As is (2.6) one can verify that G is differentiable and the derivative DG(ṽ) satisfies the
relation

< DG(ṽ)w, ϕ >= b′(ṽ; w, ϕ) ∀w ∈ X ϕ ∈ Y ,

and

(2.8) [ DG(ṽ)−DG(v) ]w = P [ [DF (ṽ)−DF (v)]w ] .

In view of assumption (Aβ) we have

‖DG(ṽ)w‖Y ′ = sup
ϕ∈Y, ϕ 6=0

< DG(ṽ)w, ϕ >

‖ϕ‖Y
≥ Cβ‖w‖X ,

i.e., DG(ṽ) is invertible and

(2.9) ‖DG(ṽ)−1‖L(Z,X) ≤
1

Cβ

with Z := Y ′.
It remains to verify that for

α ≤ 2
Cβ
‖F (ṽ)− F (u)‖Y ′ ,

with

B(ṽ, α) := {v ∈ X : ‖ṽ − v‖X ≤ α}

and

L(α) := sup
v∈B(ev,α)

‖DG(ṽ)−DG(v)‖L(X,Z),

there holds

(2.10)
2

Cβ
L(α) < 1.

Indeed, in view of (2.8) and (2.9),

2
Cβ

L(α) ≤ 2
Cβ

Cγα ≤ ( 2
Cβ

)2
Cγ‖F (ṽ)− F (u)‖Y ′ ,

and (2.10) follows from (2.4). ¤
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3. A semilinear parabolic equation

Let Ω ⊂ Rd , d = 1, 2, 3, be a bounded domain with smooth boundary ∂Ω, and
f : R → R be a smooth function; we shall assume that both f and f ′ are globally
Lipschitz continuous. We consider the following initial and boundary value problem:
seek a real-valued function u, defined on Ω̄× [0, T ], satisfying

ut −∆u = f(u) in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],(3.1)

u(·, 0) = u0 in Ω,

with u0 : Ω → R a given initial value. We assume that the data are smooth and
compatible such that (3.1) possesses a sufficiently regular solution.

Problem (3.1) is of the form (1.1) with

F (v) := −∆v − f(v).

We intend to use the abstract framework of the previous sections with

H1 = L2(Ω), H2 = H1
0 (Ω) ∩H2(Ω).

Then one should consider F defined in H1 as follows

(3.1a) (F (v), ϕ) = −(v,∆ϕ)− (f(v), ϕ), ϕ ∈ H2 = H1
0 (Ω) ∩H2(Ω).

Let

S1
k := {ϕ : [0, T ] → H1/ ϕ|In(·, t) =

q∑

j=0

χj tj , χj ∈ H1 = L2(Ω)},

and

S2
k := {ϕ : [0, T ] → H2/ ϕ|In(·, t) =

q∑

j=0

χj tj , χj ∈ H2 = H1
0 (Ω) ∩H2(Ω)}.

Then, the discontinuous Galerkin method is to find uk ∈ S1
k satisfying

(3.2) b(uk, ϕ) = 0 ∀ϕ ∈ S2
k,

with b given in (1.3).

Remark. The natural (and standard) way to define the discontinuous Galerkin method
for this problem is to seek uk ∈ Sk satisfying

(3.2′) b(uk, ϕ) = 0 ∀ϕ ∈ Sk,

where

Sk := {ϕ : [0, T ] → H1
0/ ϕ|In(·, t) =

q∑

j=0

χj tj , χj ∈ H1
0 (Ω)},
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with appropriate modifications in the definitions of F and b. It is clear that the solution
uk of (3.2′) satisfies also (3.2) and thus the estimates shown below are valid for the
discontinuous Galerkin method given in the standard formulation (3.2′).

To derive estimates in the L∞((0, T ); L2(Ω))−norm for the error u− uk we have to
appropriately select the spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) and then apply the results of
the previous section.

To this end, let X := S1
k and Y := S2

k be equipped with the norms

(3.3) ‖v‖X := sup
0<t<T

‖v(·, t)‖L2(Ω)

and

(3.4)

‖v‖Y :=
J∑

n=1

∫

In

‖vt‖L2(Ω)dt +
∫ T

0

‖v‖H2(Ω)dt

+
J−1∑
n=1

‖vn − vn+‖L2(Ω) + ‖vJ‖L2(Ω),

respectively. Of course, (X, ‖ · ‖X) is a Banach space, and due to the fact that S2
k is

piecewise polynomial space in t, it is easily seen that (Y, ‖ · ‖Y ) is a Banach space as
well. Then relation (3.2) can be equivalently written in the form:

(3.5)
Find uk ∈ X such that

b(uk, ϕ) = 0 ∀ϕ ∈ Y.

Clearly, G : X → Y ′ =: Z is well defined by

(3.6) < G(w), ϕ >= b(w,ϕ) ∀ϕ ∈ Y.

The bilinear form b′(ṽ; ·, ·) : X × Y → R,

(3.7)

b′(ṽ; w, ϕ) :=
N∑

n=1

∫

In

[
(wt, ϕ)− (w, ∆ϕ)− (f ′(ṽ)w, ϕ)

]
dt

+
N−1∑
n=1

(wn+ − wn, ϕn+) + (w0+, ϕ0+),

can also be written as

b′(ṽ; w, ϕ) = −
N∑

n=1

∫

In

[
(w,ϕt) + (w, ∆ϕ) + (f ′(ṽ)w, ϕ)

]
dt

+
N−1∑
n=1

(wn, ϕn − ϕn+) + (wJ , ϕJ) ∀w ∈ X ∀ϕ ∈ Y.

Consequently, (Aα) is satisfied. Further, a modification of the proof of Lemma 12.3 of
[Th], see also [EJT], yields
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Lemma 3.1. Assume that kn+1 ≥ ckn with a positive constant c. With

LN :=
(
log

T

kN

)1/2 + 1, and EN := e c?λT C?,

where λ = λ(f) is an appropriate constant, condition (Aβ) is satisfied with

Cβ =
1

LNEN
C

and an appropriate positive constant C.

Proof. To prove the inf − sup condition (Aβ), as in [MB], let v be a given element of
X. It suffices to find Φ ∈ Y and two positive constants β0 and β1 such that

(3.8α) b(ṽ; v,Φ) ≥ β0‖v‖2X

and

(3.8β) ‖Φ‖Y ≤ β1‖v‖X .

Since ‖v(t)‖L2(Ω) is piecewise polynomial in time, ‖v(t?)‖L2(Ω) = ‖v‖X with t? ∈ In

(or ‖v(tn−1+)‖L2(Ω) = ‖v‖X) for some n. Let Φ ∈ S2
k be the solution of the following

dual discrete problem

b(ṽ;χ, Φ) = (v(t?), χ(t?))L2(Ω) ∀χ ∈ S1
k.

Then, Φ ∈ Y and (3.8α) is satisfied with β0 = 1. An appropriate modification of the
proof of Lemma 12.3 of Thomée [Th], in view of the fact that f ′ and f ′′ are bounded,
yields (3.8β) with β1 = CLNEN . ¤

Remark. In the general case considered in this paper EN above will increase exponen-
tially with T. Under special assumptions on f though, EN may not be present in Cβ .
E.g., this is the case when f and ṽ are such that DF (ṽ)v = −∆v−f ′(ṽ)v is coercive in
V = H1

0 (Ω). In any case EN is only involved in the proof of the inf–sup condition for
b(ṽ; ·, ·) and thus attempts to improve its dependence on T in special cases should be
concentrated on proving this inf–sup condition with a better constant. Compare with
the discussion in [JRB, Section 5] where this method, for q = 0, is considered for model
problems of fluid flow.

Next, we will verify assumptions (2.3) and (2.4) of Theorem 2.1. To this end let
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v, w ∈ X and ψ ∈ Y ; we have

| < P [ [DF (ṽ)−DF (v)]w ], ψ > | =
∫ T

0

|(P [ [f ′(ṽ)− f ′(v)]w ], ψ)| dt

=
∫ T

0

|([f ′(ṽ)− f ′(v)]w, ψ)| dt

≤ ‖w‖X

∫ T

0

‖[f ′(ṽ)− f ′(v)]ψ‖L2(Ω) dt

≤ ‖w‖X

∫ T

0

‖f ′(ṽ)− f ′(v)‖L2(Ω) ‖ψ‖L∞(Ω) dt

≤ ‖w‖X ‖f ′(ṽ)− f ′(v)‖L∞((0,T );L2(Ω))

∫ T

0

‖ψ‖L∞(Ω) dt

≤ C‖w‖X ‖ṽ − v‖X

∫ T

0

‖ψ‖H2(Ω) dt

≤ C‖ṽ − v‖X ‖w‖X ‖ψ‖Y ,

where we have used the Lipschitz continuity of f ′ and Sobolev’s imbedding theorem.
Thus, (2.3) is satisfied. Moreover, for ψ ∈ Y, and recalling the definition of F by (3.1a)
we observe

| < P [ [F (ṽ)− F (u)] ], ψ > | ≤
∫ T

0

|(ṽ − u, ∆ψ)| dt

+
∫ T

0

|(f(ṽ)− f(u), ψ)| dt

≤
{
‖ṽ − u‖L∞((0,T );L2(Ω))

+ ‖f(ṽ)− f(u)‖L∞((0,T );H−2(Ω))

}
‖ψ‖Y .

Therefore, using the approximation properties of the interpolant ṽ, [Th], we have

‖P [ F (ṽ)− F (u) ]‖Y ′ ≤ ‖ṽ − u‖L∞((0,T );L2(Ω)) + ‖f(ṽ)− f(u)‖L∞((0,T );H−2(Ω))

≤ Ckq+1‖u(q+1)‖L∞((0,T );L2(Ω))

and, in view of Lemma 3.1, we easily conclude that (2.4) is satisfied.
We have thus established our main result in this section:

Theorem 3.1. Let Cβ be as in Lemma 3.1. There exists a positive k0 such that for
k ≤ k0 there exists a locally unique solution uk of (3.2) satisfying

‖uk − ṽ‖X ≤ 2
Cβ

(
‖ṽ − u‖X + ‖f(ṽ)− f(u)‖L∞((0,T );H−2(Ω))

)

and
‖u− uk‖L∞((0,T );L2(Ω)) ≤ CC−1

β max
n

(
kq+1

n ‖u(q+1)‖L∞(In;L2(Ω))

)
.
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4. Extensions–Remarks

4.1 Fully discrete analysis. The same technique can be applied in the fully dis-
crete (with space discretization) case. The analysis will be more technical and in ad-
dition one has to use mesh dependent norms in the space variable as well, as in [MB],
see also [BO], [BOP]. We will not present this case in this note.

4.2 Nonlinear parabolic problems. If one considers nonlinear parabolic problem
as in (1.1), (3.1) with nonlinearity in the principal part,

F (u) = −div (a(u)∇u)− f(u),

then similar difficulties as in [PR] arise. In particular, if, e.g., we work with the spaces
of Section 3, DF (v) in (2.3) is not even well defined. One possibility in this case
is to follow the ideas in [PR] and to finally derive estimates in spaces of the form
L∞(W 1,p). An alternative however is provided in the fully discrete case by the use of
inverse inequalities in space. In fact, in this case one can check that choosing the fully
discrete analogs of the norms of Section 3, cf. [MB], and applying the theory of Section
2 in the discrete setting, DFh(ṽ), DFh(v) are well defined but Cγ in (2.3) will grow like
Ch−1 as the minimum spatial mesh size h → 0. Therefore, the verification of (2.4) will
require a mesh condition of the form (hr + kp+1)h−1 small, r being the optimal order
provided by the space discretization.
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