
Numer. Math. (1999) 82: 521–541 Numerische
Mathematik
c© Springer-Verlag 1999

Electronic Edition

Implicit-explicit multistep methods
for quasilinear parabolic equations

Georgios Akrivis1,?, Michel Crouzeix2,
Charalambos Makridakis3,4,?,??

1 Computer Science Department, University of Ioannina, GR-451 10 Ioannina, Greece;
e-mail: akrivis@cs.uoi.gr

2 IRMAR, Universit́e de Rennes I, Campus de Beaulieu, F-35042 Rennes, France;
e-mail: michel.crouzeix@univ-rennes1.fr

3 Department of Mathematics, University of Crete, GR-714 09 Heraklion, Greece;
e-mail: makr@math.uch.gr

4 IACM, Foundation of Research and Technology-Hellas, GR-711 00 Heraklion, Greece

Received March 10, 1997 / Revised version received March 2, 1998

Dedicated to Professor Vidar Thomée on the occasion of his65th birthday,
August 20, 1998

Summary. Efficient combinations of implicit and explicit multistep meth-
ods for nonlinear parabolic equations were recently studied in [1]. In this
note we present a refined analysis to allow more general nonlinearities. The
abstract theory is applied to a quasilinear parabolic equation.
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1. Introduction

In this paper we extend our study of implicit-explicit multistep finite ele-
ment schemes for parabolic problems to quasilinear equations. In particular,
we establish abstract convergence results for these methods under weaker
stability and consistency conditions. Thus the abstract theory can be applied
to various nonlinear parabolic problems yielding convergence under mild
meshconditions.
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We consider problems of the form: GivenT > 0 andu0 ∈ H, find
u : [0, T ] → D(A) such that

(1.1)
u′(t) + Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space
(H, (·, ·)) with domain D(A) dense inH, and B(t, ·) : D(A) → H,
t ∈ [0, T ], a (possibly) nonlinear operator. To motivate the construction
of the fully discrete schemes, we first consider the semidiscrete problem
approximating (1.1): For a given finite dimensional subspaceVh of V,
V = D(A1/2), we seek a functionuh, uh(t) ∈ Vh, defined by

(1.2)
u′

h(t) + Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0
h;

hereu0
h ∈ Vh is a given approximation tou0, andAh, Bh are appropriate

operators onVh with Ah a positive definite, selfadjoint, linear operator.
Following [1] and [5], we let(α, β) be a stronglyA(0)−stableq−step

scheme and(α, γ) be an explicitq−step scheme, characterized by three
polynomialsα, β andγ,

α(ζ) =
q∑

i=0

αiζ
i , β(ζ) =

q∑
i=0

βiζ
i , γ(ζ) =

q−1∑
i=0

γiζ
i .

Letting N ∈ N, k = T
N be the time step, andtn = nk, n = 0, . . . , N,

we combine the(α, β) and(α, γ) schemes to obtain an(α, β, γ) scheme
for discretizing (1.2) in time, and define a sequence of approximationsUn,
Un ∈ Vh, to un := u(tn), by

(1.3)
q∑

i=0

αiU
n+i + k

q∑
i=0

βiAhUn+i = k

q−1∑
i=0

γiBh(tn+i, Un+i).

GivenU0, . . . , U q−1 in Vh, U q, . . . , UN are well defined by the(α, β, γ)
scheme, see [1]. The scheme (1.3) is efficient, its implementation to advance
in time requires solving a linear system with the same matrix for all time
levels.
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Stability and consistency assumptions.Let | · | denote the norm ofH, and
introduce inV the norm‖·‖ by‖v‖ := |A1/2v|. We identifyH with its dual,
and denote byV ′ the dual ofV , again by(·, ·) the duality pairing onV ′ and
V, and by‖ · ‖? the dual norm onV ′. Let Tu be a tube around the solution
u, Tu := {v ∈ V : mint ‖u(t) − v‖ ≤ 1}, say. For stability purposes, we
assume thatB(t, ·) can be extended to an operator fromV into V ′, 1 and an
estimate of the form

(1.4) ‖B(t, v) − B(t, w)‖? ≤ λ‖v − w‖ + µ|v − w| ∀v, w ∈ Tu

holds, uniformly int, with two constantsλ andµ. It is essential for our
analysis that

(1.5) λ < 1/ sup
x>0

max
|ζ|=1

| xγ(ζ)
(α + xβ)(ζ)

|,

while the tubeTu is defined in terms of the norm ofV for concreteness.
Under these conditions we will show convergence, provided that a mild
meshcondition is satisfied, see Theorem 2.1. The proof can be easily mod-
ified to yield convergence under conditions analogous to (1.4) forv and
w belonging to tubes defined in terms of other norms, not necessarily the
same for both arguments; milder or stronger meshconditions, respectively,
are required if the tubes are defined in terms of weaker or stronger norms,
cf. Remark 2.2 and Sect. 3.

We will assume in the sequel that (1.1) possesses a solution which is suf-
ficiently regular for our results to hold. Local uniqueness of smooth solutions
follows easily in view of (1.4).

For the space discretization we use a familyVh, 0 < h < 1, of finite
dimensional subspaces ofV. In the sequel the following discrete operators
will play an essential role: DefinePo : V ′ → Vh, Ah : V → Vh and
Bh(t, ·) : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

Let B(t, ·) : V → V ′ be differentiable, and assume that the linear operator
M(t), M(t) := A − B′(t, u(t)) + σI, is uniformly positive definite, for an
appropriate constantσ. We introduce the ‘elliptic’ projectionRh(t) : V →
Vh, t ∈ [0, T ], by

(1.6) PoM(t)Rh(t)v = PoM(t)v.

1 this is actually the condition needed, but for simplicity we have also assumed that
B(·, t) : D(A) → H
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We will show consistency of the(α, β, γ) scheme forRh(t)u(t); to this
end we shall use approximation properties of the elliptic projection operator
Rh(t). We assume thatRh(t) satisfies the estimates

(1.7) |u(t) − Rh(t)u(t)| + hd/2‖u(t) − Rh(t)u(t)‖ ≤ Chr,

and

(1.8) | d

dt
[u(t) − Rh(t)u(t)]| ≤ Chr,

with two integersr andd, 2 ≤ d ≤ r. We further assume that

(1.9) ‖ dj

dtj
[Rh(t)u(t)]‖ ≤ C, j = 1, . . . , p + 1,

p being the order of both multistep schemes.
For consistency purposes, we assume for the nonlinear part the estimate

‖B(t, u(t)) − B(t, Rh(t)u(t)) − B′(t, u(t))(u(t) − Rh(t)u(t))‖?

≤ Chr.(1.10)

Then, under some mild meshconditions and for appropriate starting val-
uesU0, . . . , U q−1, we shall derive optimal order error estimates in| · |.

Implicit-explicit multistep methods for linear parabolic equations with
time dependent coefficients were first introduced and analyzed in [5]. Re-
cently, [1], we analyzed implicit-explicit multistep finite element methods
for nonlinear parabolic problems, under stronger conditions on the nonlin-
earity. More precisely, we tookB independent oft, and assumed for stability
purposes the global condition

(1.4′) |(B′(v)w, ω)| ≤ λ‖w‖ ‖ω‖ + µ(v)|w| |ω| ∀v, w, ω ∈ V

with a sufficiently small constantλ and a functionalµ(v) bounded forv
bounded inV, and for consistency purposes that

(1.10′) ‖B(u(t)) − B(Rhu(t))‖? ≤ Chr

with elliptic projection operatorRh defined, in terms of the linear operator
A only, by(ARhv, χ) = (Av, χ) ∀χ ∈ Vh.

It is easily seen that (1.4) follows from (1.4′). Besides the fact that (1.4) is
local, in contrast to the global condition (1.4′), the major difference between
the two conditions consists in the norm ofω used in their last term: in (1.4′)
theH−norm while in (1.4), implicitly, theV −norm is used.

Condition (1.10′) restricts essentially the order of the derivatives con-
tained inB to d/2, if A is a differential operator of orderd. It was already
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mentioned in [1] that, for some concrete differential equations, one can get
by with a less stringent condition by taking into account in the definition
of the elliptic projection operator the terms ofB of order higher thand/2;
an attempt in this direction is the definition of the elliptic projection con-
sidered in this note. Condition (1.10) may be satisfied even ifA andB are
differential operators of the same order.

To emphasize that the new stability and consistency conditions do indeed
allow more general nonlinearities than the corresponding conditions used in
[1], we mention two simple examples of initial and boundary value problems
in one space variable in a bounded interval. It is easily seen that condition
(1.4′) is satisfied for the equation

ut − uxx = (f(u))x,

provided thatf ′ is uniformly bounded by a small constant; condition (1.4)
on the other hand is satisfied withλ = 0 for any smooth functionf. Next
we consider the equation

ut − uxx = (a(x, t, u)ux)x.

It is easily seen in this case that condition (1.10′) is not satisfied whereas
condition (1.10) is satisfied, cf. Sect. 3. These two examples are particular
cases of the quasilinear equation

ut = div(c(x, t, u)∇u + g(x, t, u)) + f(x, t, u)

which will be considered in Sect. 3.
An outline of the paper is as follows: Section 2 is devoted to the ab-

stract analysis of the implicit-explicit multistep schemes. Explicit bounds
for λ are derived for some implicit-explicit schemes of order up to6. In the
last section, we apply our abstract results to a quasilinear parabolic partial
differential equation.

2. Multistep schemes

In this section we shall analyze implicit-explicit multistep schemes for the
abstract parabolic initial value problem (1.1).

Let (α, β) be an implicit stronglyA(0)−stableq−step scheme, and
(α, γ) be an explicitq−step scheme. We assume that both methods(α, β)
and(α, γ) are of orderp, i.e.,

q∑
i=0

i`αi = `

q∑
i=0

i`−1βi = `

q−1∑
i=0

i`−1γi, ` = 0, 1, . . . , p.
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For examples of(α, β, γ) schemes satisfying these stability and consistency
properties we refer to [1] and the references therein; see also Remark 2.4.

Our main concern in this section is to analyze the approximation prop-
erties of the sequence{Un}. As an intermediate step, we shall show con-
sistency of the scheme (1.3) for the elliptic projectionW of the solutionu
of (1.1),W (t) = Rh(t)u(t).

Consistency

The consistency errorEn of the scheme (1.3) forW is given by

(2.1) kEn =
q∑

i=0

(αiI + kβiAh)Wn+i − k

q−1∑
i=0

γiBh(tn+i, Wn+i) ,

n = 0, . . . , N − q. Using (1.6), the definition ofAh andBh, and (1.1), and
lettingγq := 0, we splitEn asEn = En

1 + En
2 + En

3 + En
4 , with

(2.2i) kEn
1 =

q∑
i=0

αi[Rh(tn+i) − Po]un+i ,

(2.2ii) kEn
2 = Po

q∑
i=0

[αiu
n+i − kγiu

′(tn+i)] ,

(2.2iii) En
3 :=

q∑
i=0

(βi − γi)AhWn+i ,

and

(2.2iv)

En
4 :=

q∑
i=0

γi{AhWn+i − PoAun+i

+PoB(tn+i, un+i)

−Bh(tn+i, Wn+i)} .

First, we will estimateEn
1 . Using (1.8) and the fact thatα0 + · · · + αq = 0,

it is easily seen that

(2.3i) max
0≤n≤N−q

|En
1 | ≤ Chr .

Further, in view of the consistency properties of(α, γ),

∣∣∣ q∑
i=0

[αiu
n+i − kγiu

′(tn+i)]
∣∣∣ ≤ Ckp+1 ,
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i.e.,

(2.3ii) max
0≤n≤N−q

|En
2 | ≤ Ckp .

Now, using (1.9) and the consistency properties of(α, β) and(α, γ), we
have

(2.3iii) max
0≤n≤N−q

‖En
3 ‖? ≤ Ckp .

Finally, we will estimateEn
4 . First, from (1.6) we deduce that

[Ah − B′
h(t, u(t)) + σI]Rh(t)u(t) = Po[A − B′

h(t, u(t)) + σI]u(t)

and rewrite (2.2iv) as

En
4 = Po

q∑
i=0

γi{B(tn+i, un+i) − B(tn+i, Wn+i)

− B′(tn+i, un+i)(un+i − Wn+i)} + σPo

q∑
i=0

γi(un+i − Wn+i) .

Then, in view of (1.10) and (1.7), we obtain

(2.3iv) max
0≤n≤N−q

‖En
4 ‖? ≤ Chr .

Thus, we have the following estimate for the consistency errorEn,

(2.4) max
0≤n≤N−q

‖En‖? ≤ C(kp + hr) .

Convergence

In the sequel assume that we are given initial approximationsU0, U1, . . . ,
U q−1 ∈ Vh to u0, . . . , uq−1 such that

(2.5)
q−1∑
j=0

(
|W j − U j | + k1/2‖W j − U j‖

)
≤ C(kp + hr).

Let Un ∈ Vh, n = q, . . . , N, be recursively defined by the(α, β, γ) scheme
(1.3). Letϑn = Wn − Un, n = 0, . . . , N . Then (2.1) and (1.3) yield the
error equation forϑn

(2.6)

q∑
i=0

(αiI +kβiAh)ϑn+i =

k

q−1∑
i=0

γi{Bh(tn+i, Wn+i) − Bh(tn+i, Un+i)} + kEn,

n = 0, . . . , N − q.
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The rational functionse(`, ·) andf(`, ·) defined from the expansions

(2.7)

(
α(ζ) + xβ(ζ)

)−1 =
∑

`∈Z
e(`, x) ζ−`,(

α(ζ) + xβ(ζ)
)−1

γ(ζ) =
∑

`∈Z
f(`, x) ζ−`,

will play an important role in the stability analysis. Due to the strong
A(0)−stability, for allx ∈ (0,∞], the modulus of all roots ofα(·) + xβ(·)
is less than one. Therefore, the expansions are valid for all|ζ| ≥ 1 and
we havee(`, ·) = 0 for ` ≤ q − 1 andf(`, ·) = 0 for ` ≤ 0. We also
note that the only pole of these rational functions is−αq/βq < 0 and that
they vanish at∞. Thus, we can definee(`, kAh) andf(`, kAh). We let
b` := Bh(t`, W `) − Bh(t`, U `), and set

ϑ0
1 = 0, ϑn

1 = k

n−1∑
`=0

f(n − `, kAh)b`,

ϑn
2 = k

n−q∑
`=0

e(n − `, kAh)E`.

Then, in view of (2.7), we have

q∑
i=0

(αiI+kβiAh)(ϑn+i
1 +ϑn+i

2 ) = k

q−1∑
i=0

γi b
n+i+kEn, n = 0, . . . , N−q,

cf., e.g., [9, pp. 242–244]. Therefore, the sequenceϑn
3 , ϑn

3 = ϑn −ϑn
1 −ϑn

2 ,
satisfies the relation

q∑
i=0

(αiI + kβiAh)ϑn+i
3 = 0, n ≥ 0,

and, consequently, withgj(n, x) =
∑q

`=j+1 e(n+`−j, x)(α` + xβ`),

ϑn
3 =

q−1∑
j=0

gj(n, kAh)ϑj
3, n ≥ 0.

It is easily seen thatϑj
2 = 0, for j ≤ q − 1; thereforeϑ0

3, . . . , ϑ
q−1
3 , and

thus allϑn
3 , depend only on the initial entriesW 0, . . . , W q−1, U0, . . . , U q−1.

Using a spectral expansion in terms of the eigenvectors ofAh and Par-
seval’s identity we prove the following result. Similar techniques are used
in [10] and [11].
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Lemma 2.1.There exist positive constantsK1, K2, M1, M2, N1 andN2,
depending only onα,β andγ, such that for anyn, 0 ≤ n ≤ N , the following
estimates are valid

(2.8i) k

n∑
`=0

‖ϑ`
1‖2 ≤ K2

1 k

n−1∑
`=0

‖b`‖2
?,

(2.8ii) |ϑn
1 |2 ≤ K2 k

n−1∑
`=0

‖b`‖2
?,

(2.9i) k

n∑
`=0

‖ϑ`
2‖2 ≤ M2

1 k

n−q∑
`=0

‖E`‖2
?,

(2.9ii) |ϑn
2 |2 ≤ M2 k

n−q∑
`=0

‖E`‖2
?,

and

(2.10i) k

n∑
`=0

‖ϑ`
3‖2 ≤ N1

q−1∑
j=0

(|ϑj
3|2 + k‖ϑj

3‖2),

(2.10ii) |ϑn
3 | ≤ N2

q−1∑
j=0

|ϑj
3|.

In particular, withm1(x, ζ) = x
(α+xβ)(ζ) andk1(x, ζ) = m1(x, ζ)γ(ζ),

K1 = sup
x>0

max
|ζ|=1

|k1(x, ζ)|, K2 = sup
x>0

∫ 1

0
| 1√

x
k1(x, e−2iπt)|2dt,

M1 = sup
x>0

max
|ζ|=1

|m1(x, ζ)|, M2 = sup
x>0

∫ 1

0
| 1√

x
m1(x, e−2iπt)|2dt,

N1 = max
0≤j≤q−1

sup
x>0

∫ 1

0

x |δj(e−2iπt, x)|2
1 + x

dt,

N2 = max
0≤j≤q−1

sup
n≥q

sup
x>0

|gj(n, x)|,

where

δj(ζ, x) =

∑q
`=j+1(α` + xβ`)ζ`∑q
`=0(α` + xβ`)ζ`

.
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Proof. It suffices to show the estimates forb` = 0 for ` ≥ n, E` = 0 for
` ≥ n− q +1, andn replaced by∞ on the right-hand sides. The proof now
consists of two parts: First we derive the bounds as stated and then show
thatK1, . . . , N2 are indeed finite.

We introduce

Ê(t) =
∞∑

`=0

E`e2iπ`t and ϑ̂j(t) =
∞∑

`=0

ϑ`
je

2iπ`t, j = 2, 3;

from the definition ofϑ2 and (2.7), we deduce

ϑ̂2(t) = k
(
α(e−2iπt)I + β(e−2iπt)kAh

)−1
Ê(t).

Therefore, we have‖ϑ̂2(t)‖ ≤ M1‖Ê(t)‖?, and, using Parseval’s identity,
∞∑

`=0

‖ϑ`
2‖2 =

∫ 1

0
‖ϑ̂2(t)‖2 dt ≤ M2

1

∫ 1

0
‖Ê(t)‖2

? dt = M2
1

∞∑
`=0

‖E`‖2
?,

i.e. (2.9i) holds. Using similar arguments we prove (2.8i). In order to prove
(2.10i), we first note that, in view of (2.7),

ϑ̂3(t) =
q−1∑
j=0

∞∑
`=0

q∑
s=j+1

e(` + s − j, kAh)e2iπ(`+s−j)t (αs + βskAh)

×e−2iπstϑj
3e

2iπjt

=
q−1∑
j=0

∑
`∈Z

e(`, kAh)e2iπ`t
q∑

s=j+1

(αs + βskAh)e−2iπstϑj
3e

2iπjt

=
q−1∑
j=0

δj(e−2iπt, kAh)ϑj
3e

2iπjt.

Further

k

∫ 1

0
‖δj(e−2iπt, kAh)ϑj

3e
2iπjt‖2 dt ≤ N1 (|ϑj

3|2 + k‖ϑj
3‖2),

and, therefore,

k

∫ 1

0
‖ϑ̂3(t)‖2 dt ≤ N1

q−1∑
j=0

(|ϑj
3|2 + k‖ϑj

3‖2),

which immediately yields (2.10i). For the estimate (2.9ii), let{wm} be an
H−orthonormal basis ofVh consisting of eigenfunctions ofAh, Ahwm =
λmwm. ThenÊ(t) can be expressed as

Ê(t) =
∑
m

êm(t)wm;
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with xm = kλm, we have

ϑn
2 =

∫ 1

0
ϑ̂2(t)e−2iπnt dt

=
√

k
∑

`

1√
λ`

∫ 1

0

√
x`

(α + x`β)(e−2iπt)
ê`(t)e−2iπnt dt w`.

Therefore, we conclude, using the Cauchy–Schwarz inequality,

|ϑn
2 |2 = k

∑
`

1
λ`

|
∫ 1

0

√
x`

(α + x`β)(e−2iπt)
ê`(t)e−2iπnt dt |2

≤ kM2
∑

`

1
λ`

∫ 1

0
|ê`(t)|2 dt = kM2

∫ 1

0
‖Ê(t)‖2

? dt,

and (2.9ii) follows. Using similar arguments we prove (2.8ii).
To complete the proof it remains to verify thatK1, K2, M1, M2, N1 and

N2 are finite. ForN2 we refer to [7]. Let us next consider the mapk1 which
is continuous from the compact set[0,+∞]×S1 intoC, except ifx = 0 and
ζ is a root ofα. Therefore, in order to prove boundedness ofK1, it suffices
to show thatk1 is bounded in a neighborhood of these points. From the
Dahlquist0−stability condition, i.e., “α(0) = 1 and the roots of modulus 1
of α are simple”, we deduce that there existr analytic functionsζ1, . . . , ζr

from [0, η] into C, such thatζj(x) are roots ofα + xβ, andζj = ζj(0),
j = 1, . . . , r, are the unimodular roots ofα. Then, we can write

k1(x, ζ) =
r∑

j=1

xaj(x)
ζ − ζj(x)

+ b(x, ζ),

where the functionsaj as well as the coefficients of the rational function
b(x, ·) are analytic on[0, η]. We observe that, forζ ∈ S1,

|ζ − ζj(x)|
x

≥ 1 − |ζj(x)|
x

→ −Re
ζ ′
j(0)

ζj(0)
(asx → 0).

The strongA(0)−stability means that, for allx ∈ (0,∞], the modulus of

all roots ofα + xβ is less than one, and the “growth factors” Re
ζ′
j(0)

ζj(0)
of the

principal rootsζj , j = 1, . . . , r, of α satisfy Re
ζ′
j(0)

ζj(0)
< 0. Therefore,K1 is

bounded. Similarly, we can show thatM1 is finite. ForK2, we note that, in
view of Minkowski’s inequality, it suffices to verify that, forx ∈ [0, η] and
j = 1, . . . , r,

Aj =
∫ 1

0

x|aj(x)|2
|e−2iπt − ζj(x)|2 dt =

x|aj(x)|2
1 − |ζj(x)|2
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is bounded; this follows from the proof forK1. In a similar way, one can
see thatM2 andN1 are finite as well. ut

In our main result, Theorem 2.1, we will need to estimateϑn. Part of
it, namelyϑn

2 + ϑn
3 , can be estimated in terms ofϑ0, . . . , ϑq−1 and the

consistency errorsE0, . . . , EN−q.

Lemma 2.2.There exists a constantC such that, forn = 0, . . . , N ,

|ϑn − ϑn
1 |2 + k

n∑
`=0

‖ϑ` − ϑ`
1‖2 ≤

C
{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

n−q∑
`=0

‖E`‖2
?

}
.(2.11)

Proof.Sinceϑj
2 = 0 for j = 0, . . . , q − 1, we have

ϑj
3 = ϑj −

j−1∑
`=0

f(j − `, kAh)b`, j = 0, . . . , q − 1.

Therefore

|ϑj
3| ≤ |ϑj | +

√
k

j−1∑
`=0

mj−`‖b`‖?, and ‖ϑj
3‖ ≤ ‖ϑj‖ +

j−1∑
`=0

nj−`‖b`‖?,

with

m` = sup
x>0

|√xf(`, x)|, and n` = sup
x>0

|f(`, x)|.

Then (2.11) follows from the relationϑn − ϑn
1 = ϑn

2 + ϑn
3 , and from (2.9)

and (2.10). ut

The main result in this paper is given in the following theorem:

Theorem 2.1.Let k and h2rk−1 be sufficiently small. Then, we have the
local stability estimate

|ϑn|2+ k
n∑

`=0

‖ϑ`‖2 ≤

Cecµ2tn
{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

n−q∑
`=0

‖E`‖2
?

}
,(2.12)
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n = q − 1, . . . , N, and the error estimate

(2.13) max
0≤n≤N

|u(tn) − Un| ≤ C(kp + hr).

Proof.Let ρn = un − Wn, n = 0, . . . , N. Then, according to (1.7),

(2.14) max
0≤n≤N

|ρn| ≤ Chr

and, for sufficiently smallh,

(2.15) max
0≤n≤N

‖ρn‖ ≤ 1/2,

i.e., in particular,Wn ∈ Tu, n = 0, . . . , N. Now, assuming for the time
being that (2.12) holds, using (2.5) and (2.4), we obtain

(2.16) max
0≤n≤N

|ϑn| ≤ C(kp + hr) ,

and (2.13) follows immediately from (2.14) and (2.16). Thus, it remains to
prove (2.12). According to (2.5) and (2.4), there exists a constantC? such
that the right-hand side of (2.12) can be estimated byC2

? (kp + hr)2,

(2.17) Cecµ2T
{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

N−q∑
`=0

‖E`‖2
?

}
≤ C2

? (kp + hr)2.

The estimate (2.12) is obviously valid forn = q−1. Assume that it holds for
q − 1, . . . , n − 1, q ≤ n ≤ N. Then, according to (2.17) and the induction
hypothesis, we have, fork andh2rk−1 small enough,

max
0≤j≤n−1

‖ϑj‖ ≤ C?(kp−1/2 + k−1/2hr) ≤ 1/2,

i.e., using also (2.15),

(2.18) U j ∈ Tu, j = 0, . . . , n − 1.

Therefore, in view of (1.4) and Minkowski’s inequality,

(
k

n−1∑
`=0

‖b`‖2
?

)1/2 ≤
(
k

n−1∑
`=0

(λ‖ϑ`‖+µ|ϑ`|)2
)1/2 ≤ λan−1+µdn−1+en−1

with

an =
(
k

n∑
`=0

‖ϑ`
1‖2

)1/2
, dn =

(
k

n∑
`=0

|ϑ`
1|2

)1/2
,

and en =
(
k

n∑
`=0

(λ‖ϑ` − ϑ`
1‖ + µ|ϑ` − ϑ`

1|)2
)1/2

.
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Thus, (2.8i) and (2.8ii) yield, forn ≥ 1,

(2.19) an ≤ K1(λ an−1 +µ dn−1 +en−1) ≤ K1(λ an +µ dn−1 +en−1),

and
d2

n − d2
n−1

k
≤ K2(λ an + µ dn−1 + en−1)2;

therefore, in view of (1.5), we haveλK1 < 1 and

d2
n − d2

n−1

k
≤ K2

(µdn−1 + en−1

1 − λK1

)2 ≤ 2c(µ2d2
n−1 + e2

n−1),

with c = K2
(1−λK1)2 . Hence, we deduce (note thatd0 = 0)

d2
n ≤ 2ck

n−1∑
`=0

e2cµ2(tn−1−t`)e2
` ≤ 2ck

e2cµ2tn − 1
e2cµ2k − 1

e2
n−1

≤ e2cµ2tn − 1
µ2 e2

n−1.

Thus, we haveµdn ≤ ecµ2tnen−1 and

(2.20i) an ≤ K1

1 − K1λ
(1 + ecµ2tn)en−1,

and

(2.20ii) |ϑn
1 | ≤ √

c (µdn−1 + en−1) ≤ √
c (1 + ecµ2tn)en−1.

Now, (2.20) and (2.11) yield

|ϑn
1 |2+ k

n∑
`=0

‖ϑ`
1‖2 ≤

Cecµ2tn
{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

n−q∑
`=0

‖E`‖2
?

}
.(2.21)

From (2.21) and (2.11) it easily follows that (2.12) holds forn as well, and
the proof is complete. ut

Remark 2.1. Let τ ∈ R be such thatA + τI is positive semidefinite. It is
then easily seen that the results of Theorem 2.1 hold also for the scheme

q∑
i=0

αiU
n+i +k

q∑
i=0

βi(AhUn+i + τUn+i)

= k

q−1∑
i=0

γi[Bh(tn+i, Un+i) + τUn+i].
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Remark 2.2. The weak meshcondition “k−1h2r small” is used in the proof
of Theorem 2.1 only to show that‖ϑn‖ ≤ 1/2 which implies (2.16). If the
estimate (1.4) holds in tubes aroundu defined in terms of weaker norms,
not necessarily the same for both argumentsv andw, one may get by with
an even weaker meshcondition. Assume, for instance, that (1.4) holds for
v, w ∈ T ?

u := {ω ∈ V : mint ‖u(t)−ω‖? ≤ 1} —or for v ∈ Tu, cf. (2.15),
andw ∈ T ?

u — and the norm‖ · ‖? satisfies an inequality of the form

‖v‖? ≤ |v| + |v|1−a‖v‖a, v ∈ V,

for some constanta, 0 ≤ a < 1. Then, a condition of the form “k and
k−ah2r sufficiently small” suffices for (2.11) and (2.12) to hold.

Similarly, when the relation (1.4) is satisfied in tubes aroundu defined
in terms of stronger norms, not necessarily the same for both arguments,
the convergence result of Theorem 2.1 may still be valid but understronger
meshconditions, cf. [1]; this fact will be used in the next section.

Remark 2.3. The condition (1.5) is sharp. Indeed, assume thatλK1 > 1.
Sincelim|ζ|→∞ xγ(ζ)/[α(ζ) + xβ(ζ)] = 0, we can findx > 0 andζ ∈ C

with |ζ| > 1 satisfying

| λxγ(ζ)
α(ζ) + xβ(ζ)

| = 1;

thus, there exists aΘ ∈ R such that

α(ζ) + x
(
β(ζ) − λeiΘγ(ζ)

)
= 0.

Choosing thenB(t, u) = λeiΘAu, condition (1.4) is satisfied. According
to the von Neumann criterion, a necessary stability condition is that, ifν is
an eigenvalue ofA, the solutions of

q∑
i=0

[αi + kν(βi − λeiΘγi)]vn+i = 0,

are bounded; forkν = x this is not the case, since the root condition is not
satisfied; therefore, the scheme is not unconditionally stable.

Remark 2.4. The(α, β, γ) methods given by the polynomials

α(ζ) =
q∑

j=1

1
j
ζq−j(ζ − 1)j , β(ζ) = ζq, and γ(ζ) = ζq − (ζ − 1)q

satisfy our assumptions with the orderp = q. The corresponding implicit
(α, β) schemes are the well-known B.D.F. methods which are strongly
A(0)−stable for1 ≤ q ≤ 6. In this case,K1 = 2q − 1. First, clearly,

2q − 1 = lim
x→∞ |k1(x,−1)| ≤ K1.
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Further, withd(ζ) :=
∑q

j=1
1
j (1 − ζ−1)j ,

k1(x, ζ) =
1 − (1 − ζ−1)q

1 + d(ζ)/x
.

Then, forζ ∈ S1 such that Red(ζ) ≥ 0,

|k1(x, ζ)| ≤ |1 − (1 − ζ−1)q| ≤ 2q − 1.

Thus,K1 ≤ 2q − 1, for q = 1 and2, since Red(ζ) is nonnegative in this
case. For Red(ζ) < 0,

sup
x>0

|k1(x, ζ)| =
|d(ζ)|

|Im d(ζ)| |1 − (1 − ζ−1)q|,

and, forq = 3, 4, 5, 6, we have computationally checked that the right-hand
side is bounded by2q − 5. ThusK1 ≤ 2q − 1. Consequently, in this case
condition (1.5) readsλ < 1

2q−1 .

Remark 2.5. Assume we discretize problem (1.1) by an implicitA(Θ)-
stable(α, β) scheme, which corresponds to takingγ = β in our framework.
Then, it easily follows from our analysis that the resulting scheme is stable
and our estimates hold, provided thatλ < 1 − cos Θ.

3. Application to a quasilinear equation

In this section we shall apply our results to a class of quasilinear equations:
Let Ω ⊂ R

ν , ν ≤ 3, be a bounded domain with smooth boundary∂Ω. For
T > 0 we seek a real-valued functionu, defined onΩ̄ × [0, T ], satisfying

(3.1)

ut − div(a(x)∇u) =

div(b(x, t, u)∇u + g(x, t, u)) + f(x, t, u) in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0 in Ω,

with a : Ω̄ → (0,∞), b, f : Ω̄× [0, T ]×R → R, g : Ω̄× [0, T ]×R → R
ν ,

andu0 : Ω̄ → R given smooth functions. We are interested in approximating
smooth solutions of this problem, and assume therefore that the data are
smooth and compatible such that (3.1) gives rise to a sufficiently regular
solution. We assume that−div([a(x)+ b(x, t, u)]∇·) is an elliptic operator.

Let Hs = Hs(Ω) be the usual Sobolev space of orders, and‖ · ‖Hs

be the norm ofHs. The inner product inH := L2(Ω) is denoted by(·, ·),
and the induced norm by| · |; the norm ofLs(Ω), 1 ≤ s ≤ ∞, is denoted
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by ‖ · ‖Ls . Let Av := −div(a∇v) and B(t, v) := div(b(·, t, v)∇v) +
divg(·, t, v) + f(·, t, v). Obviously,V = H1

0 = H1
0 (Ω) and the norm‖ · ‖

in V, ‖v‖ = |√a∇v|, is equivalent to theH1−norm.
Let

T̃u := {v ∈ V ∩ L∞ : min
t

‖u(t) − v‖L∞ ≤ 1},

T̂u := {v ∈ V ∩ W 1
∞ : min

t
‖u(t) − v‖W 1∞ ≤ 1},

and
λ := sup{|b(x, t, y)|/a(x) : x ∈ Ω, t ∈ [0, T ], y ∈ U}

with U := [−1 + minx,t u, 1 + maxx,t u].
Now, for v, w, ϕ ∈ V,

(B(t, v) − B(t, w), ϕ) =
− (b(·, t, w)∇(v − w),∇ϕ) − ([b(·, t, v) − b(·, t, w)]∇v,∇ϕ)
− (g(·, t, v) − g(·, t, w),∇ϕ) + (f(·, t, v) − f(·, t, w), ϕ) ,

and we easily see that

(3.2) ‖B(t, v)−B(t, w)‖? ≤ λ‖v −w‖+µ|v −w| v ∈ T̂u, w ∈ T̃u.

Thus, a stability condition of the form (1.4) is satisfied forv ∈ T̂u and
w ∈ T̃u.

Further,

B′(t, v)w = div(b(·, t, v)∇w) + div(∂3b(·, t, v)w∇v)

+div(∂3g(·, t, v)w) + ∂3f(·, t, v)w ,

and, therefore,A − B′(t, u(t)) + σI is, for an appropriate constantσ, uni-
formly positive definite inH1

0 .
Let Vh be the subspace ofV defined on a regular finite element partition

Th of Ω, and consisting of piecewise polynomial functions of degree at
mostr − 1, r ≥ 2. Let hK denote the diameter of an elementK ∈ Th,
andh := maxK∈Th

hK . We define the elliptic projection operatorRh(t),
Rh(t) : V → Vh, t ∈ [0, T ], by

([a(·) +b(·, t, u(·, t))]∇(v − Rh(t)v),∇χ)

+([∂3b(·, t, u(·, t))]∇u(·, t) + ∂3g(·, t, u(·, t))](v − Rh(t)v),∇χ)

−([∂3f(·, t, u(·, t)) − σ](v − Rh(t)v), χ) = 0 ∀χ ∈ Vh.

It is well known from the error analysis for elliptic problems that

(3.3) |v − Rh(t)v| + h‖v − Rh(t)v‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩ H1
0 ,
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i.e., the estimate (1.7) is satisfied withd = 2. Further,

(3.4) | d

dt
[u(·, t) − Rh(t)u(·, t)]| ≤ Chr,

and

(3.5)
| dj

dtj
Rh(t)v| +h‖ dj

dtj
Rh(t)v‖ ≤ Chr‖v‖Hr ,

v ∈ Hr ∩ H1
0 , j = 1, . . . , p + 1,

cf., e.g., [4]; thus (1.8) and (1.9) are valid. We further assume, cf. [12], [15],
that

(3.6) sup
t

‖u(·, t) − Rh(t)u(·, t)‖W 1∞ ≤ 1
2
.

Next, we will verify (1.10). We have

(3.7i)

B(t, u(t)) −B(t, Rh(t)u(t)) − B′(t, u(t))(Rh(t)u(t) − u(t))

= −
∫ 1

0
τB′′(t, Rh(t)u(t) − τ [Rh(t)u(t) − u(t)]

)
dτ

×[Rh(t)u(t) − u(t)]2

and

(3.7ii)
B′′(t, v)w2 = div(∂2

3b(·, t, v)w2∇v) + 2div(∂3b(·, t, v)w∇w)

+div(∂2
3g(·, t, v)w2) + ∂2

3f(·, t, v)w2.

It easily follows from (3.7) and (3.3), in view of (3.6), that

‖B(t, u(t)) − B(t, Rh(t)u(t)) − B′(t, u(t))(u(t) − Rh(t)u(t))‖H−1

≤ Chr,(3.8)

i.e., (1.10) is satisfied.
Now, letW (t) := Rh(t)u(t), and assume that we are given approxima-

tionsU0, . . . , U q−1 ∈ Vh to u0, . . . , uq−1 such that

(3.9)
q−1∑
j=0

(
|W j − U j | + k1/2‖W j − U j‖

)
≤ c(kp + hr).
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Then, we defineUn ∈ Vh, n = q, . . . , N, recursively by the(α, β, γ)
scheme

(3.10)

q∑
i=0

αi(Un+i, χ) + k

q∑
i=0

βi(a(·)∇Un+i,∇χ)

= k

q−1∑
i=0

γi{−(b(·, tn+i, Un+i)∇Un+i + g(·, tn+i, Un+i),∇χ)

+(f(·, tn+i, Un+i), χ)}, ∀χ ∈ Vh,

n = 0, . . . , N − q,

with (α, β) and(α, γ) multistep schemes of orderp, and(α, β) strongly
A(0)−stable. Then, Theorem 2.1 yields, in view of (3.6), for sufficiently
smallk and provided that the approximate solutionsUn are inT̃u, the error
estimate

(3.11) max
n

|un − Un| ≤ c(kp + hr).

To ensure thatUn ∈ T̃u, n = 0, . . . , N, we defineh := minK∈Th
hK

and will distinguish three cases:ν = 1, ν = 2 andν = 3.

i. ν = 1. First, since theH1−norm dominates theL∞−norm in one
space dimension, we have

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C max
0≤j≤n+q−1

‖ϑj‖,

and thus, according to (2.14),

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C(kp−1/2 + k−1/2hr).

Therefore, fork and k−1h2r sufficiently small, in view of (3.6),U j ∈
T̃u, j = 0, . . . , n + q − 1. We easily conclude that the convergence result
holds.

ii. ν = 2. First, we note that

‖χ‖L∞ ≤ C| log(h)|1/2‖χ‖H1 ∀χ ∈ Vh,

cf. [13; p. 68]. It is then easily seen that the convergence result holds, ifk and
h are chosen such that| log(h)|k2p−1 and| log(h)|k−1h2r are sufficiently
small.

iii. ν = 3. In this case,

‖χ‖L∞ ≤ Ch−1/2‖χ‖H1 ∀χ ∈ Vh,
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and the result (3.11) holds, provided thath−1k2p−1 and k−1h−1h2r are
sufficiently small.

Remark 3.1. Let the quasilinear equation be given in the form

ut = div(c(x, t, u)∇u + g(x, t, u)) + f(x, t, u).

It can then be written in the form used in (3.1) by letting, say,a(x) :=
c(x, 0, u0) andb(x, t, u) := c(x, t, u) − a(x).

Different splittings might be used on a finite number of subintervals
of [0, T ]. Assume, for instance, that an approximationU to u(·, ta) has
been computed. Then, the splittinga(x) := c(x, ta, U) andb(x, t, u) :=
c(x, t, u) − a(x) may be used on a time interval[ta, tb].

Remark 3.2As mentioned in the introduction, the stability assumption (1.4)
is weaker than (1.4′) which was used in [1]. For smoothB, (1.4) implies

(1.4′′) |(B′(v)w, ω)| ≤ λ‖w‖‖ω‖ + µ(v)|w| ‖ω‖ ∀v, w, ω ∈ V.

The use of (1.4′′) may lead to improvements in the analysis of the applica-
tions in [1; Sect. 4]. In particular, the convergence results of [1; Sect. 4.2] for
the Cahn–Hilliard equation in one space dimension will now hold without
any meshconditions. Also, in [1; Sect. 4.3] a reaction diffusion equation with
power nonlinearities that grow no faster than|ξ|ρ, ρ ≤ 4, in R

3 was consid-
ered. A more refined analysis shows that the stability hypothesis (1.4′′) is
now satisfied forρ < 5 in R

3.
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3. Bramble J.H., Pasciak J.E., Sammon P.H., Thomée V. (1989) Incomplete iterations
in multistep backward difference methods for parabolic problems with smooth and
nonsmooth data. Math. Comp.52, 339–367

4. Bramble J.H., Sammon P.H. (1980) Efficient higher order single step methods for
parabolic problems: Part I. Math. Comp.35, 655–677
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11. Savaŕe G. (1993)A(Θ)−stable approximations of abstract Cauchy problems. Numer.
Math.65, 319–335

12. Schatz A.H., Wahlbin L.B. (1995) Interior maximum-norm estimates for finite element
methods, Part II Math. Comp.64, 907–928
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