Numer. Math. (1999) 82: 521-541 NumeriSChe

Mathematik
(© Springer-Verlag 1999

Electronic Edition

Implicit-explicit multistep methods
for quasilinear parabolic equations

Georgios Akrivis'*, Michel Crouzeix?,
Charalambos Makridakis?4***

1 Computer Science Department, University of loannina, GR-451 10 loannina, Greece;

e-mail: akrivis@cs.uoi.gr

IRMAR, Universite de Rennes I, Campus de Beaulieu, F-35042 Rennes, France;
e-mail: michel.crouzeix@univ-rennes1.fr

Department of Mathematics, University of Crete, GR-714 09 Heraklion, Greece;
e-mail: makr@math.uch.gr

4 |ACM, Foundation of Research and Technology-Hellas, GR-711 00 Heraklion, Greece

Received March 10, 1997 / Revised version received March 2, 1998

Dedicated to Professor Vidar Thd@ma on the occasion of his!" birthday,
August 20, 1998

Summary. Efficient combinations of implicit and explicit multistep meth-
ods for nonlinear parabolic equations were recently studied in [1]. In this
note we present a refined analysis to allow more general nonlinearities. The
abstract theory is applied to a quasilinear parabolic equation.

Mathematics Subject Classification (19965M60, 65M12, 65L06

1. Introduction

In this paper we extend our study of implicit-explicit multistep finite ele-
ment schemes for parabolic problems to quasilinear equations. In particular,
we establish abstract convergence results for these methods under weaker
stability and consistency conditions. Thus the abstract theory can be applied
to various nonlinear parabolic problems yielding convergence under mild
meshconditions.
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522 G. Akrivis et al.

We consider problems of the form: Givéh > 0 and«’ € H, find
w: [0,T] — D(A) such that

(1.1)

with A a positive definite, selfadjoint, linear operator on a Hilbert space
(H,(-,-)) with domain D(A) dense inH, and B(t,) : D(A) — H,

t € [0,T], a (possibly) nonlinear operator. To motivate the construction
of the fully discrete schemes, we first consider the semidiscrete problem
approximating (1.1): For a given finite dimensional subspigeof V,

V = D(A'Y?), we seek a functiomy,, uy,(t) € V;,, defined by

(12) uﬁl(t) + Apup(t) = Br(t,up(t)), 0<t<T,
up(0) = ud;

hereu! € V}, is a given approximation ta®, and A, By, are appropriate
operators oV}, with A;, a positive definite, selfadjoint, linear operator.

Following [1] and [5], we let «, 3) be a stronglyA(0)—stableg—step
scheme anda, y) be an explicity—step scheme, characterized by three
polynomialsa, 6 and~,

q q q—1
Q)= ail’, BQO=) 6 AWY=D) W
=0 =0 =0

Letting N € N, k = % be the time step, ant® = nk,n = 0,..., N,
we combine thda, 3) and(«, ) schemes to obtain af, 3,~) scheme
for discretizing (1.2) in time, and define a sequence of approximatiéns
Um € Vi, tou™ := u(t"), by

9 q q—1
(13) Z aiUTH*’L' + k Z ﬂiAhUn+i —k Z’Y’L’Bh(trH»ia Un+7,)
=0 i=0 i—0

GivenU?, ..., U tinV;,,U4,...,U"N are well defined by thex, 3, )
scheme, see [1]. The scheme (1.3) is efficient, its implementation to advance
in time requires solving a linear system with the same matrix for all time
levels.
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Stability and consistency assumptioni®t | - | denote the norm off, and
introduce inV’ the norm|| - || by ||v|| := | A'/?v|. We identify H with its dual,
and denote by’ the dual ofl/, again by(-, -) the duality pairing o’’’ and
V, and by|| - ||, the dual norm or/”’. Let T;, be a tube around the solution
u, T, := {v € V : miny [|lu(t) — v|| < 1}, say. For stability purposes, we
assume thaB(t, -) can be extended to an operator fréfinto V/, 2 and an
estimate of the form

(14 [B(t,v) = B(t,w)lls < Ao —wl + plv —w|  Vo,weTy

holds, uniformly int, with two constants\ and . It is essential for our
analysis that

z7(¢)
*9 A e e B Q)
while the tubeT, is defined in terms of the norm &f for concreteness.
Under these conditions we will show convergence, provided that a mild
meshcondition is satisfied, see Theorem 2.1. The proof can be easily mod-
ified to yield convergence under conditions analogous to (1.4) fand
w belonging to tubes defined in terms of other norms, not necessarily the
same for both arguments; milder or stronger meshconditions, respectively,
are required if the tubes are defined in terms of weaker or stronger norms,
cf. Remark 2.2 and Sect. 3.

We will assume in the sequel that (1.1) possesses a solution which is suf-
ficiently regular for our results to hold. Local uniqueness of smooth solutions
follows easily in view of (1.4).

For the space discretization we use a family 0 < h < 1, of finite
dimensional subspaces ©f In the sequel the following discrete operators
will play an essential role: Defing, : V! — V,, A, : V. — V} and
By(t,:) : V — Vj, by

(Pov,x) = (v,x) VX €Vp
(Arp,x) = (Ap,x) VYx €V
(Bh(t,QO),X) = (B(ta 90)7X) vX € Vh-

Let B(t,-) : V — V' be differentiable, and assume that the linear operator
M(t), M(t) := A— B'(t,u(t)) + o1, is uniformly positive definite, for an
appropriate constant We introduce the ‘elliptic’ projectioR,(t) : V —

Vi, t € [O,T], by

(1.6) P, M (t)Rp(t)v = PoM(t)v.

! this is actually the condition needed, but for simplicity we have also assumed that
B(-,t): D(A) - H
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We will show consistency of théx, 3,v) scheme forR,,(t)u(t); to this
end we shall use approximation properties of the elliptic projection operator
Ry, (t). We assume thaky, () satisfies the estimates

(L7 Jult) = Ra(t)u()] + A2 [|u(t) — Ry(tu(t)]| < CH',

and

d
dt
with two integers- andd, 2 < d < r. We further assume that

(1.8 [u(t) — Rp(t)u(t)]] < Ch",

19 | Rl <€ =1, 4,

p being the order of both multistep schemes.
For consistency purposes, we assume for the nonlinear part the estimate

[B(t, u(t)) — B(t, Rp(t)u(t)) — B'(t, u(t))(u(t) — Rp(t)u(t))|«
(1.10) <CH.

Then, under some mild meshconditions and for appropriate starting val-
uesU?, ..., U1 we shall derive optimal order error estimates in.

Implicit-explicit multistep methods for linear parabolic equations with
time dependent coefficients were first introduced and analyzed in [5]. Re-
cently, [1], we analyzed implicit-explicit multistep finite element methods
for nonlinear parabolic problems, under stronger conditions on the nonlin-
earity. More precisely, we took independent of, and assumed for stability
purposes the global condition

14)  |(B'(w,w)| < Al @] + p)|w]|lw]  Vv,w,w eV

with a sufficiently small constant and a functionaj:(v) bounded forv
bounded inV, and for consistency purposes that

(110) |B(u(t)) - B(Ryu(t)]l. < Ch"

with elliptic projection operatoR;, defined, in terms of the linear operator
Aonly, by (ARpv, x) = (Av, x) Vx € V.

Itis easily seen that (1.4) follows from (1)4Besides the fact that (1.4) is
local, in contrast to the global condition (1).4he major difference between
the two conditions consists in the normwfised in their last term: in (%
the H—norm while in (1.4), implicitly, thel’—norm is used.

Condition (1.10) restricts essentially the order of the derivatives con-
tained inB to d/2, if A is a differential operator of ordet. It was already
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mentioned in [1] that, for some concrete differential equations, one can get
by with a less stringent condition by taking into account in the definition
of the elliptic projection operator the terms Bfof order higher thar//2;

an attempt in this direction is the definition of the elliptic projection con-
sidered in this note. Condition (1.10) may be satisfied evehahd B are
differential operators of the same order.

To emphasize that the new stability and consistency conditions do indeed
allow more general nonlinearities than the corresponding conditions used in
[1], we mention two simple examples of initial and boundary value problems
in one space variable in a bounded interval. It is easily seen that condition
(1.4) is satisfied for the equation

Ut — Ugg = (f(u))l‘a

provided thatf’ is uniformly bounded by a small constant; condition (1.4)
on the other hand is satisfied with= 0 for any smooth functiorf. Next
we consider the equation

Up — Ugy = (a(x, t,u)uy)y.

It is easily seen in this case that condition (1)1i8 not satisfied whereas
condition (1.10) is satisfied, cf. Sect. 3. These two examples are particular
cases of the quasilinear equation

up = div(c(z, t,u)Vu + g(z, t,u)) + f(z,t,u)

which will be considered in Sect. 3.

An outline of the paper is as follows: Section 2 is devoted to the ab-
stract analysis of the implicit-explicit multistep schemes. Explicit bounds
for \ are derived for some implicit-explicit schemes of order uf.ttm the
last section, we apply our abstract results to a quasilinear parabolic partial
differential equation.

2. Multistep schemes

In this section we shall analyze implicit-explicit multistep schemes for the
abstract parabolic initial value problem (1.1).

Let (o, ) be an implicit stronglyA(0)—stableg¢—step scheme, and
(v, 7y) be an explicity—step scheme. We assume that both mettiods)
and(«, ) are of ordemp, i.e.,

q q q—1
Ziﬁai = EZ’L'E_l,BZ' = EZie_lfyi, ﬁzo,l,...,p.
=0 =0 =0
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For examples of«, 3, v) schemes satisfying these stability and consistency

properties we refer to [1] and the references therein; see also Remark 2.4.
Our main concern in this section is to analyze the approximation prop-

erties of the sequendd/"}. As an intermediate step, we shall show con-

sistency of the scheme (1.3) for the elliptic projectidhof the solutionu

of (1.1), W(t) = Ry (t)u(t).

Consistency

The consistency errdt™ of the scheme (1.3) fdiV is given by

q q—1
(2.1) kLE™ = Z(ail + kﬁz‘Ah)W”—H —k Z’YiBh(tn—Ha Wn+i) ’
=0 i=0

n=0,...,N —q.Using (1.6), the definition ofA;,, and By, and (1.1), and
lettingy, := 0, we splitE™ asE™ = E + E3 + E¥ + E}, with

q
(Z.Zi) ]{jE{L = Z a; [Rh(tn—i-i) . Po]un—i-i ’
=0
q ' '
(2.2ii) kEy = P, Z[aiun—m . k%ul(tn+1)] :
=0
q .
=0
and

q . .
Ep =Y i { AW — P, Aunt
1=0

(2.2iV) —|—POB(tn+i, un—l—i)
_Bh(thri7 Wn+l>} )

First, we will estimatel7'. Using (1.8) and the fact thaty + - - - + oy = 0,
it is easily seen that

(2.3i) max |E7| < Ch".
0<n<N—q

Further, in view of the consistency propertieg af ),

q
‘ Z[am”” — k! (7T < CRPTY
i=0
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i.e.,

(2.3ii) max |Ey| < CEP.
0<n<N—q

Now, using (1.9) and the consistency propertieg@f3) and («, ), we
have

(2.3iii) max ||ED|. < CkP.
0<n<N—gq

Finally, we will estimateZy. First, from (1.6) we deduce that
[Ap — By (t,u(t)) + o) Ry(t)u(t) = Pa[A — By (t,u(t)) + ol]u(t)

and rewrite (2.2iv) as

q
EZ - P, Z %{B(tn—i-i’ un-i—i) _ B(tn+i, Wn-‘ri)

i=0
q
— B'(t"T W (" — W)Y 4 o P, Z yi (T — W)
i=0
Then, in view of (1.10) and (1.7), we obtain
(2.3iv) max ||E}|x < Ch".

0<n<N—q

Thus, we have the following estimate for the consistency dtfgr

) "y < P .
(2.4) J e [|E" L < COP 4 )
Convergence
In the sequel assume that we are given initial approximaftithd/!, .. .,
Uit eV, tou?, ..., w91 such that
q—1
25 Y (|W9 U9+ RV W - UJ||) < C(kP + h").
7=0

LetU™ € Vi, n =g, ..., N, be recursively defined by the, 3, v) scheme
(2.3). Lety®* = W™ —U",n =0,...,N. Then (2.1) and (1.3) yield the
error equation fo)™

q

> (aul +kpi AR =
i=0 )
(2-6) < n4+1i n4+1 n4+1i n4+1 n
Yl Bu(t"™ W) — By (8", UM} + kET,
i=0

n=0,...,N —q.
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The rational functions(¢, -) and f (¢, -) defined from the expansions

(a(¢) +2B(Q)) " = Tyez ellix) ¢,
(@(¢) +28(0) " 7(C) = Sep fllx) ¢,

will play an important role in the stability analysis. Due to the strong
A(0)—stability, for allz € (0, co], the modulus of all roots af(-) + z3(-)

is less than one. Therefore, the expansions are valid fdcjal> 1 and
we havee(¢,-) = 0for¢ < ¢g—1landf(¢,-) = 0 for ¢ < 0. We also
note that the only pole of these rational functions-is, /3, < 0 and that
they vanish ato. Thus, we can define(¢, kA;) and f(¢,kAp). We let

bt = Byt W) — By,(t*,U"), and set

(2.7)

n—1
=0, I =k> fln—0EA),
=0

02 =k e(n—0 kAy)E".

Then, in view of (2.7), we have

q q—1
D (I +kBiAn) (07T +95) =k Y 3ib" ' +kE", n=0,...,N—q,
=0 =0

cf., e.q., [9, pp. 242-244]. Therefore, the sequetige); = V" —J7 — Iy,
satisfies the relation
q .
Z (il + kB Ap)95 ™ =0, n >0,
i=0

and, consequently, with; (n,z) = >77_. .| e(n+{—j,x)(ar + 25s),

q—1
5= Zgj(n, kAp)Vs, n >0
=0
Itis easily seen that}, = 0, for j < ¢ — 1; therefores3, ..., 94", and

thus ally?, depend only on the initial entriég®, ..., W=t U° ... UL

Using a spectral expansion in terms of the eigenvector;cdnd Par-
seval’s identity we prove the following result. Similar techniques are used
in [10] and [11].
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Lemma 2.1.There exist positive constanks,, Ko, My, My, N1 and Ns,
depending only ory, 3 and~, such thatforany:, 0 < n < N, the following
estimates are valid

n n—1
(2.8i) B 0512 < KRS ()2,
=0 =0
n—1
(2.8ii) 02 < Ko k> (612,
=0
n n—q
(2.9) BY ISR < MERY (B2,
=0 =0
n—gq
(2.9ii) 5P < My kY| B2,
/=0
and
(2.10) B 0507 < Ny > (1952 + kl[95)12),
£=0 Jj=0
-1
(2.10ii) 93] < Na Y |94,
§=0

In particular, withm; (x, () = (aﬂfw andk (z, ) = my(z, )v((),

1
1 .
K1 = supmax |ki(z, ()|, Ky = Sup/ —ky (z, e ™) 2dt,
>0 [¢|=1 Fa (2, ¢)l z>0.J0 ‘\/E ( |
b 2irmty |2
M, = supmax |mq(z, ()|, My = Sup/ —mq(z,e” “"")|7dt,
m>o\<|:1| (@0) >0 Jo |\/ﬂ7 v )
U 15, (e=2imt 2
N; = max sup/ z19;(e Eal dt,
0<j<a—1 250 Jo l+a
Nao= max sup sup |g;(n, )],

0<5<q=1 n>q¢ >0

where

B ZZ:]‘_H(O‘Z +z80)¢"

5j(C,$) = Zzzo(aé‘i‘xm)d :
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Proof. It suffices to show the estimates fgr = 0 for ¢ > n, E¢ = 0 for
£ >n—q-+1,andn replaced byx on the right-hand sides. The proof now
consists of two parts: First we derive the bounds as stated and then show
thatKy, ..., Ny are indeed finite.

We introduce

ZEZ 2imhlt and 19 Zﬁf 2imlt ] _ 2 3
=0 £=0

from the definition of¢, and (2.7), we deduce
Da(t) = k(a(e 2™ + Be 2™k A,) E(t).

Therefore, we hav¢52(t)|| < M1||177(t)|]*, and, using Parseval’s identity,

SO 1052 = /0 1Ba() 2 dt < M /O IE@I2 dt = M2 S B,
=0 =0

i.e. (2.9i) holds. Using similar arguments we prove (2.8i). In order to prove
(2.10i), we first note that, in view of (2.7),

q—1 oo q
(1) = D ell+s— g, kAp)eX D (o + Bk Ap)
=0 £=0 s=j+1

<
Il
=)

% e—217rst19%6217r]t

Q
;_-

q
6 f kZA 2171'215 Z (055 + ﬁskAh)e—%wstﬁéeinjt
€7 s=j+1

.Qm
I

HO
~

5j (6—217rt’ kAh),lgéeinjt_

<.
I
o

Further
k/ 16 (€37, kAp) 9™ ||? dt < Ny (|05 + k[[95]1%),
0

and, therefore,
q—1

k/o 19s(0) 2 dt < Ny S (032 + K92,

7=0

which immediately yields (2.10i). For the estimate (2.9ii),{et,,} be an
H—orthonormal basis of}, consisting of eigenfunctions of,,, A,w,, =
AmWm,. ThenE(t) can be expressed as

(t) = Z Em () Wm;
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with z,,, = k\,,,, we have
1 o~ .
9y = / Vo(t)e 2™ gt
0

1 1 /Ty R it
— k _ 1™ d .
25 || et diw

Therefore, we conclude, using the Cauchy—Schwarz inequality,
1 1 Ty .
9n 2 _ k - . 5,(t —2imnt dt 2
75 23&'/ Tt LOS

1
<034 [ o=kt [ 10
0

and (2.9ii) follows. Using similar arguments we prove (2.8ii).
To complete the proof it remains to verify th&t , Ko, M7, Ms, N1 and
N> are finite. ForN, we refer to [7]. Let us next consider the miapwhich
is continuous from the compact $et+oo] x Sp into C, exceptifr = 0 and
(¢ is aroot ofa. Therefore, in order to prove boundednesgof it suffices
to show thatk; is bounded in a neighborhood of these points. From the
Dahlquist0—stability condition, i.e., &(0) = 1 and the roots of modulus 1

of a are simple”, we deduce that there exisinalytic functionsy, ..., (.
from [0, 77] into C, such that(;(x) are roots ofo + =3, and(; = ¢;(0),
j=1,...,r are the unimodular roots aef. Then, we can write
azaj )
.I C Z C .fL' ('T) C))

where the functions; as well as the coefficients of the rational function
b(x,-) are analytic on0, n]. We observe that, faf € S,

C=G@l 1=1G@)] | GO

T - x ¢;(0)
The strongA(0)—stability means that, for alt € (0, oo}, the modulus of

all roots ofa + x5 is less than one, and the “growth factors” g%% of the
J

principal roots(;, 7 = 1,...,r, of a satisfy Regj% < 0. Therefore K is

bounded. Similarly, we can show th&f; is finite. ForK5, we note that, in
view of Minkowski's inequality, it suffices to verify that, far € [0, 7] and
j=1,...,r

(asx — 0).

b afa(a))? wla; ()|
A; = —1 dt = J
’ /0 e~ — ()] t 1—|¢(x)?
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is bounded; this follows from the proof fdk;. In a similar way, one can
see that\/, and V; are finite as well. O

In our main result, Theorem 2.1, we will need to estiméte Part of

it, namely 9% + 9%, can be estimated in terms of,... 99! and the
consistency errorg?, ... EN4,
Lemma 2.2.There exists a constant such that, fom = 0,..., N,

0" — 0P+ kY [0 = 0P <

(=0
q—1 ' _ n—q
(2.11) C{ D07 + k9712) + kB
j=0 /=0
Proof.Sinceﬁg =0forj=0,...,9— 1, we have
. ]71
=0 =3 f(5— kALY, j=0,...,q—1.
£=0
Therefore
03] <[]+ VEY myo|blls, and [ <[]+ n b,
=0 =0
with

mfzsup‘ﬁf(£7x)‘a and nEZSUP|f(€ax)"
>0 >0

Then (2.11) follows from the relatiof” — 97 = ¥4 + ¥%, and from (2.9)
and (2.10). O

The main result in this paper is given in the following theorem:

Theorem 2.1.Let k and h?"k~! be sufficiently small. Then, we have the
local stability estimate

92+ kS <
=0

—_

q

n—q
(2.12) Cer ™ LN (1092 + k|9 12) + kD IEE

=0 =0

<
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n=gq—1,...,N, and the error estimate

ny _ rrm D r
(2.13 OISI}%XN]u(t )—U"| < C(kP +h").

Proof.Let p™ = u™ — W™ n=0,...,N. Then, according to (1.7),

2.14 "< Ch"
(2.14 pax, Ip"| <

and, for sufficiently smalk,

<

(2.15) oax [l < 1/2,
i.e., in particularW" € T,,,n = 0,..., N. Now, assuming for the time
being that (2.12) holds, using (2.5) and (2.4), we obtain
(2.16) max [9"] < C(kP +h"),

0<n<N
and (2.13) follows immediately from (2.14) and (2.16). Thus, it remains to
prove (2.12). According to (2.5) and (2.4), there exists a consgtarstch
that the right-hand side of (2.12) can be estimated'Bgk? + h")?,

q—1 N—q
(247 Ce ™ TLI (WP + k|[97|2) + & > B2} < G2 + )2,
§=0 (=0

The estimate (2.12) is obviously valid for= ¢— 1. Assume that it holds for
g—1,...,n—1,qg <n < N.Then, according to (2.17) and the induction
hypothesis, we have, farandh?"k~! small enough,

max ||| < C, (kP72 + k71207) < 1/2,
0<j<n—1

i.e., using also (2.15),
(2.18) UveT, j=0,...,n—1.

Therefore, in view of (1.4) and Minkowski’s inequality,
n—1 1/2 n—1 1/2

(D2 12) ™ < (B DI I4+a9)?) " < Nan-1+pdn-1-+ens
=0 =0

with

o= (B0 = ()
=0 £=0

n 1/2
and e, = (kY9 = o]+ o’ = 01)%) .
=0
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Thus, (2.8i) and (2.8ii) yield, for > 1,

(2-19) an < Ky ()\ Gn—1+pdn—1 +en71) < Kl()\ an+pdp—1+ enfl)a
and

d?z _ d%—l 2

—% = Ko(Aan + pdn-1+en-1)%

therefore, in view of (1.5), we havek; < 1 and

d, —d;_; pdn—1+ €n—1
ko 2( 1- K,

with ¢ = (1_1;‘7;{1)2 Hence, we deduce (note that = 0)

2
)" < 2e(pPdy_ + el ),

2 nd 2cu2(tn—1 t@ 2 eQC'thn - ]. 2
dn < QCKZG e N )eg < 2ck men_l
=0

ch,th" -1 5

Ten_l.
Thus, we haveud,, < e**t"¢,_; and

5 Kl 24n

(220|) Qp, < m(l —+ et t )en_l,
and
(2.20ii) 97| < Ve (dn_1 + en_1) < Ve (14 M en_q.

Now, (2.20) and (2.11) yield

P+ Y95 <

=0
q—1 n—gq
(2.21) Ce ™ {3 (1072 + KIIIP) + kDB }
j=0 £=0

From (2.21) and (2.11) it easily follows that (2.12) holdscas well, and
the proof is complete. O

Remark 2.1. Let 7 € R be such thatd + 71 is positive semidefinite. It is
then easily seen that the results of Theorem 2.1 hold also for the scheme

q q
Z a; U™ 4k Z ﬁz‘(AhUnH + U™
=0 =0
q—1
=k wlBu(t"H UM 4 U,
=0
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Remark 2.2. The weak meshconditiork* 12" small” is used in the proof

of Theorem 2.1 only to show th§®" || < 1/2 which implies (2.16). If the
estimate (1.4) holds in tubes aroundiefined in terms of weaker norms,
not necessarily the same for both argumendsdw, one may get by with

an even weaker meshcondition. Assume, for instance, that (1.4) holds for
v,w e Ty :={w eV :min ||u(t)—w|* <1} —orforv € T, cf. (2.15),
andw € T;— and the nornj| - ||* satisfies an inequality of the form

lol* < o] + o' ~*flo]l®, veV,

for some constant,0 < a < 1. Then, a condition of the form‘and
k~2h?" sufficiently small” suffices for (2.11) and (2.12) to hold.

Similarly, when the relation (1.4) is satisfied in tubes arourtkfined
in terms of stronger norms, not necessarily the same for both arguments,
the convergence result of Theorem 2.1 may still be valid but ustd@nger
meshconditions, cf. [1]; this fact will be used in the next section.

Remark 2.3. The condition (1.5) is sharp. Indeed, assume Mf&t > 1.
Sincelim|¢|_o 27(¢)/[(¢) + 2B(¢)] = 0, we can findr > 0 and¢ € C
with || > 1 satisfying
| Azy(C)
a(¢) +z3(¢)

thus, there exists @ ¢ R such that

Q) +z(B(¢) — /\eiev(C)) =0.

Choosing therB(t,u) = \e'® Au, condition (1.4) is satisfied. According
to the von Neumann criterion, a necessary stability condition is thaisif
an eigenvalue ofi, the solutions of

=1

q
Z[ai + kv (B — Ael©,)]u" T = 0,
=0

are bounded; fokr = x this is not the case, since the root condition is not
satisfied; therefore, the scheme is not unconditionally stable.

Remark 2.4. The («a, 3,7) methods given by the polynomials
q
1 ) .
a(Q) =) SN B =¢ and A(Q == (- 1)
j=1

satisfy our assumptions with the ordee ¢. The corresponding implicit
(o, B) schemes are the well-known B.D.F. methods which are strongly
A(0)—stable forl < ¢ < 6. In this caseK; = 27 — 1. First, clearly,

21 -1 = ILm |k1(x, —1)] < K;.
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Further, withd(¢) := Y27, 1(1 — ¢71)/,

— Lu=1j

L—(1—¢
1+d()/z
Then, for¢ € S; such that Rel(¢) > 0,

kl(x’ C) =

[k1(z, Q) <1 —(1—¢HY <27 1.

Thus,K; < 27 — 1, for ¢ = 1 and2, since Rel(() is nonnegative in this
case. For R€(¢) < 0,

(<) -1
sup |k (x, =———|1—-(1-— q,
and, forqg = 3,4, 5, 6, we have computationally checked that the right-hand
side is bounded bg? — 5. ThusK; < 27 — 1. Consequently, in this case

condition (1.5) readd < 5.

Remark 2.5. Assume we discretize problem (1.1) by an implidit©)-
stable(«, 3) scheme, which corresponds to taking- /3 in our framework.
Then, it easily follows from our analysis that the resulting scheme is stable
and our estimates hold, provided that 1 — cos ©.

3. Application to a quasilinear equation

In this section we shall apply our results to a class of quasilinear equations:
Let? C R”, v < 3, be a bounded domain with smooth boundafy. For
T > 0 we seek a real-valued functien defined onf2? x [0, T'], satisfying

up — div(a(z)Vu) =
div(b(z,t,u)Vu+ g(z,t,u)) + f(z,t,u) in2x][0,T],
u=0 on 92 x [0, T,

(3.2)

u(-,0) = u° in £,

witha : 2 — (0,00),b, f: 2x[0,T]xR =R, g: 2x[0,T] xR — R,
andu' : 2 — R given smooth functions. We are interested in approximating
smooth solutions of this problem, and assume therefore that the data are
smooth and compatible such that (3.1) gives rise to a sufficiently regular
solution. We assume thatdiv([a(z) + b(x, t,u)|V-) is an elliptic operator.

Let H® = H*({2) be the usual Sobolev space of ordeand|| - || =
be the norm offf*. The inner product inff := L?(2) is denoted by, -),
and the induced norm by |; the norm ofL*(£2), 1 < s < oo, is denoted
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by || - ||zs. Let Av := —div(aVv) and B(t,v) := div(b(-,t,v)Vv) +
divg(-, t,v) + f(:,t,v). Obviously,V = H} = H}(£2) and the nornj| - ||
inV, |lv]| = |\/aVw], is equivalent to thé? ! —norm.
Let
T,:={veVnNL>®: min [[u(t) - vl|z <1},
T, ={veVnwk: mtin Ju(t) = vllwy, <1},
and
= sup{[b(z,t,y)|/a(z) : z € 2,6 € [0,T],y € U}
with ¢ := [—1 + ming ¢ u, 1 + max, ¢ ul.
Now, forv, w, o € V,
(B(t,’()) - B(taw)780) =
- (b(,t,w)V(v - ’U)),V(,O) - ([b<7ta U) - b(atyw)]VUaVSO)
- (g(-j,v) - g(,t,U)),VQO) + (f(’ta U) - f(7t7w)7g0) )

and we easily see that
(3.2) |B(t,v)— B(t,w)||lx < Alv—w|+plv—w| veT,we T,

Thus, a stability condition of the form (1.4) is satisfied forc T, and
w € Ty,.
Further,
B'(t,v)w = div(b(-, t,v)Vw) + div(d3b(-, t,v)wVv)
+dlv(83g(7 t) ’U)U)) + a3f('? t7 U)w )

and, therefored — B'(t,u(t)) 4+ o1 is, for an appropriate constamt uni-
formly positive definite inH}.

Let V}, be the subspace &f defined on a regular finite element partition
T, of £2, and consisting of piecewise polynomial functions of degree at
mostr — 1, r > 2. Let hx denote the diameter of an elemdiit e 7,
andh := maxge7, hi. We define the elliptic projection operatd, (1),
Rh(t) VoV, te [O,T}7 by

([a(-) +b(, £, u(-, 1)V (v = Ra(t)v), V)
+([03(-, t,u (-, 1)) Vu(-, ) + 039(-, t,u(-, )] (v — Ra(t)v), V)
—([0sf (-t u(,t)) — ol(v — Rp(t)v),x) =0 Vx € Vp.
It is well known from the error analysis for elliptic problems that

(3.3 |v— Ry(t)v| + h|v — Rp(t)v|| < Ch"||Jv||gr, v € H" N HY,
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i.e., the estimate (1.7) is satisfied with= 2. Further,

d

(3.4) .

[u(-,t) = Ra(t)u(-,1)]| < CH',
and

d .
oy RO I RO < OF ol

veH NH, j=1,....,p+1,

cf., e.q., [4]; thus (1.8) and (1.9) are valid. We further assume, cf. [12], [15],
that

N

(3.6 sup [[u(, £) = Ru(t)u(, £)llwy, <
Next, we will verify (1.10). We have

B(t, u(t)) =B(t, Ra(t)u(t)) — B'(t,u(t))(Rp(t)u(t) — u(t))
(3.71) S /0 LB (4 Ru(t)u(t) — T[Ra(t)u(t) — u(t))dr
x[Ry(t)u(t) — u(t)]?
and

B’ (t,v)w? = div(92b(-, t, v)w?Vv) + 2div(93b(-, t, v)wVw)

(3.7i1)
+div(02g(-, t, v)w?) + 02 f (-, t,v)w?.

It easily follows from (3.7) and (3.3), in view of (3.6), that

I1B(t,u(t)) — B(t, Ru(t)u(t)) — B'(t,u(t))(u(t) — Rp(t)u(t)) |z
(3.8) < Ch,

i.e., (1.10) is satisfied.
Now, letW (t) := Ry (t)u(t), and assume that we are given approxima-
tionsUY,..., Ut € Vj, tou?, ..., u?"! such that

—_

(3.9 (|Wj — U9+ KV —Uj||> < (kP + h").

Q

<
Il
o
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Then, we defind/™ € Vj,, n = ¢,..., N, recursively by the(a, 3,7)
scheme

LS

q

DU )+ kY Bia()VU™, V)

=0 i=0
q—1
(3'10) =k Z %-{_(b(,7 tn+z7 Un-i-z)VUn—H + g(_, tn-i—z7 Un-i—z), VX)
i=0

+(fC, T UM, X)), Y € Vi,
n=0,...,N —q,

with («, 5) and(«a, ) multistep schemes of order and («, 3) strongly
A(0)—stable. Then, Theorem 2.1 yields, in view of (3.6),~for sufficiently

smallk and provided that the approximate soluti@fisare inT,,, the error
estimate

(3.13) max |u" — U"| < (kP + h").
n
To ensure that/™ ¢ fu,n =0,...,N, we defineh := minge7, hi
and will distinguish three caseg'= 1, v = 2 andv = 3.

i.v = 1. First, since thel/! —norm dominates th&°°—norm in one
space dimension, we have

max |||~ <C  max %],
0<j<ntq-1 0<j<ntq-1

and thus, according to (2.14),

max ||[¥]|pe < C(KP~Y2 4 k=207,
0<j<n+g¢—1

Therefore, fork and k~'h*" sufficiently small, in view of (3.6)[/7 <
T.,7=0,...,n+ q— 1. We easily conclude that the convergence result
holds.

ii.v=2. First, we note that
Ixlizee < Cllog(W)[M2 (Xl VX € Vi,

cf. [13; p. 68]. Itis then easily seen that the convergence result holdanid
h are chosen such thalog(h)|k?*~! and|log(h)|k~'h?" are sufficiently
small.

iii. v=3. Inthis case,

Ixllzee < CL7Y2 Xl Vx € Vi,
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and the result (3.11) holds, provided that'%2*—! andk—'h~'h?" are
sufficiently small.

Remark 3.1. Let the quasilinear equation be given in the form
up = div(e(z, t,u)Vu + g(x, t,u)) + f(z,t,u).

It can then be written in the form used in (3.1) by letting, say;) :=
c(z,0,u’) andb(x, t,u) := c(x,t,u) — a(x).

Different splittings might be used on a finite number of subintervals
of [0, T]. Assume, for instance, that an approximatignto u(-,¢,) has
been computed. Then, the splittiagr) := c(z,t,,U) andb(x,t,u) =
c(z,t,u) — a(x) may be used on a time intenval,, ¢;].

Remark 3.2As mentioned in the introduction, the stability assumption (1.4)
is weaker than (1/3which was used in [1]. For smoofh, (1.4) implies

(14)  [(B'wyw,w)] < Muwlllwll + p@)le| ol Vo,w,we V.

The use of (1.4) may lead to improvements in the analysis of the applica-
tionsin [1; Sect. 4]. In particular, the convergence results of [1; Sect. 4.2] for
the Cahn—Hilliard equation in one space dimension will now hold without
any meshconditions. Also, in[1; Sect. 4.3] a reaction diffusion equation with
power nonlinearities that grow no faster tHaft, p < 4, in R? was consid-
ered. A more refined analysis shows that the stability hypothesi$)(i&.4
now satisfied fop < 5 in R3.

AcknowledgementThe authors would like to thank an anonymous referee for his sugges-
tions which motivated a revision of the stability analysis of [2] leading to a substantial
improvement of the condition ok.
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