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A ferromagnetic film

The magnetisation vector M = M(x, y, t)

M2(x,y,t) = M?, we typically normalise m = M /M, thus m? = 1.

The skyrmion number

is a topological invariant and it counts the number of times that the
magnetisation M covers the sphere m? = 1
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Antisymmetric exchange interaction:
Dzyaloshinskii-Moriya (DM) materials

A typical and minimal energy functional for m = (mj, mo, m3) is

W = Wex + W, + Wpu.

o The usual symmetric exchange energy
1 2
Wex:§ O,m - O,md°x, w=12.
e An easy-axis anisotropy energy (with constant K > 0)

K
W, = 5 /(m% + m3) d*x.

o An exchange of the Dzyaloshinskii-Moriya type (A = %1)

WDM:)\/m-(me)dzx.
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The Landau-Lifshitz (LL) equation

The conservative (Hamiltonian) LL equation associated with the energy is

om

—&:—mxf, m? =1

w
fz—é—:Am—i—nmgeg—D\me.

om
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Static solutions: m X f = (0 - one dimension

A Bloch (domain) wall m(x) = (0, sin O(x), cos ©(x)), where

tan <@> — Vkx
2

W =2k — 7.

has energy

Spiral state

For k — (m2/4)\? the domain wall energy W — 0. For
Kk > (m2/4)A% we have a proliferation of domain walls. A helical
magnetisation configuration “a spiral” is the ground state of the system.
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Static solutions: m X f = (0 - two dimensions

Skyrmion (Q = 1) Skyrmionium (Q = 0)

O

T ) Stable excited states for kK > (72/4))\2
-1 [A. N. Bogdanov and A. Hubert, IMMM (1999)]
£ Somionan Skyrmionium-type configurations observed
' ’ in (non-DM):
\ ’ [Moutafis, et al, PRB (2007)]
AN [Finazzi, et al, PRL (2013)]
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Phase diagram (sketch)

h
Sk [Tonomura et al, Nanoletters 2012]
ho FM :
hel
TSKX
H 2\ Sk

2\ Skm
Ke K

H: helix, FM: ferromagnetic state, SkX: skyrmion lattice (ground states)
Sk: skyrmion, Skm: skyrmionium (excited states)

he=72/16, hy~ 0.8, ke = w2 /4.
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Dynamics of skyrmions

Fundamental relation for evolution of topological density [Papanicolaou,
Tomaras, 19917:

§g=—€u0u(f-0m) =e€,,0,0x0,\, p,v,A=1,2

where f - aum = —aya;w.
The tensor 0, has components

1
o =3 (Oom - om — Oym - Oym) + E(m% + m3) + A(m10am3 — m3Oamy

2
019 = — 81m 0 82111 aF /\(m361m1 — m181m3)
091 = — 811’1‘1 . (92111 —+ )\(m282m3 - m382m2)

1
g929 25 (81m g Blm — 82m o 82111) TF g(m% aF m%) TF )\(m381m2 — m281m3
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Dynamics of skyrmions: /,,

Define the moments of topological density g:
Iy = /xuqd2x w=172.

Prove that they are conserved }u = 0 (by application of fundamental

relation in previous page).

A rigid translation of spatial coordinates by a constant vector

Xy = xy+cy = ly— 1, +47Qc,

reveals difference between topological (Q # 0) and non-topological
(@ = 0) magnetic solitons.
e For Q # 0, the (/1,/2) gives position of skyrmion and this is fixed.

e For Q = 0, skyrmions may propagate freely (solitary waves).
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Q@ = 0 skyrmionium as a traveling wave

Assume propagating skyrmionium with velocity v (solitary wave). We
make the traveling wave ansatz m = m(x — vt,y) and this satisfies
Om

v— =m X f.
X

We find numerically traveling solutions for 0 < v < v, ~ 0.102

v=20 v=0.07

—6 -3 0 3 —6 -3 0 3
T

m3 contour plots (solid lines: m3 > 0, dashed lines: m3 < 0)
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Energy — Momentum relation

The linear momentum P = (Pl,,PQ) is defined from

o
20 17
o WY
] -
10 16
0.00 0.02 0.04 0.06 0.08 0.1 B 10 20 3
v 1 P
2
(P1 =) P=mo, W:W0+§mv, B

We may associate a mass (m) to the skyrmionium

At low momenta W = Wy + % (Newtonian)
At high momenta W = v.P (relativistic).
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Force and acceleration on a Q = 0 skyrmionium
Apply an external non-homogeneous magnetic field, e.g.,
h =(0,0,h), h=gx.
The force changes the linear momentum
P, = —/8Xh(1 —m3)d’x, P, =0.
t

Force for + < 100 =0 t =160

50 100 150 200 =10 =5 0 5 10 =10 =5 0
t T T

Skyrmion dynamics for Q = 0

When forced, it accelerates. Propagates freely in the absence of force.
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Force on Q = 1 skyrmions

Apply a magnetic field gradient

Skew deflection of

magnetic bubbles in

field-gradient

[Malozemoff, Slonczewski,
“Magnetic Domain Walls in
Bubble Materials”, 1979]

h = (0,0,h), h=gx.

4
A

10pm
—A

Fig. 13.2. Initial and final normal photographs and nine intermediate superimposed high-
speed photographs of a hard bubble at the end of each of a sequence of nine gradient pulses of
length 2 psec and strength H, = [rVH,| = 4.5 Oe oriented as indicated in a EuGaYIG film. The
overall direction of the bubble motion illustrates the skew deflection of hard bubbles and the
elliptical transient shape suggests a bunching effect. The horizontal lines indicate the center
line of the gradient (after Patterson et al**7)
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Hall motion of @ = 1 skyrmion

We follow the skyrmion guiding center R = (R1, R2):

R, = 7/M = 71 /X qd2X.
o 4rQ 470 i

The evolution equations are calculated as

R, =0, R, =-— 47ro/8h

Skyrmion dynamics for Q # 0

When forced, propagates with constant velocity.
It is spontaneously pinned in the absence of force.
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Skyrmion dynamics under spin-transfer torque (and damping)

LL equation of motion

Oom
ot
f+omxf—(8—a)udm—a(f—a)um x dm].

=—mxXg

8T 11 a2
The time derivative of the topological density
§=—€u0u(g-0,m)

The moments /,, are no longer conserved

Integral relations which should be satisfied by all solutions of the LL eqn:

(1+a®)h = —(8— a)udiz + a Dy + (1 + aB)u (47Q)
(1 =+ a2)72 = (,6 — Oé)udll —aDy

where
dyy = /(8Mm - 9,m) d’x, D, = /(m x f) - 0,m d’x.
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A traveling Q@ = 0 skyrmionium

We apply the integral relations for @ = 0 where the momentu

(P1,P2) = (I2, —11)

(1 =4F CYQ)Pl = (,8 — a)ud11 = aD1
(1 + a2)[32 = (,3 = Oz)udu — aDs.
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Stead-state propagation: virial relations

Spin torque + damping — steady-state

Assume a traveling wave
m(xq,x2,t) = mo(§1,€2;01,02), &1 =x1—0vit, & =x2 — Vst
The LL equation reduces to

uOm —y,0m=-mxf+mx (fudym— av, d,m).

Virial relations for steady states with velocity (v1,02)

Take cross product of both sides with aum and then contract with m:

(—47TQ aF ad21)271 + adogvy = Buda — u (4’7TQ)
ad1v1 + (470 + adi2)ve = Pudii.
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Steady-state propagation for a Q = 0 skyrmionium

If the skyrmionium eventually reaches a traveling steady state then

di1 di2\ (ov1 — Bu O) U1 gu
= =
d21  doo (e%2p) 0 vy =0
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Concluding remarks

e The Dzyaloshinskii-Moriya interaction in ferromagnetic materials
supports stable non-trivial magnetic patterns (domain wall, skyrmion,
skyrmionium, etc).

e A topological Q # 0 skyrmion is pinned in a ferromagnetic film. It
moves perpendicular to an applied force. The dynamics is analogous
to the motion of an electron in a perpendicular magnetic field.

e A non-topological @ = 0 skyrmionium may move freely as a

solitary wave. It responds as a Newtonian particle to forces.

o Integral relations are derived and used to test the results.
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