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Lecture 2a. The magnetization vector

Consider a ferromagnet with aligned magnetic moments

The magnetization is the density of magnetic moments f in a volume

A
M= —M, AV is a small volume.
AV
By applying a strong magnetic field we may align all magnetic moments
("saturate” the magnetization) along the field direction and measure the

saturation magnetization M.

Magnetic domains
H=0 M=0 M= M
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http://link.aps.org/abstract/PRB/v76/e104426
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The Bloch sphere

The magnetization vector takes values on the Bloch sphere, M

A ferromagnet is described by the magnetization vector M = M(x, t) with (see,
Landau, Lifshitz, Pitaevskii, "Statistical Physics I1")

IM| = M, (=const.).

Bloch sphere

Magnetization configuration
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A continuous spin variable

Let us assume a chain of spins which may not be perfectly aligned. The
exchange energy depends on the neighbours of each spin S,

Eex = _JZSQ 'SaJrl = _% Zsa : (Sa+1 + SOéfl)'

A continuum approximation

Consider a small parameter € and define (€ can be defined in different ways)

@ A space variable x = ecx where «v is an integer index (€ may be the
spacing between atoms).

o A continuous field S(x) such that S, = S(x) at the position of each spin
a.

The continuous field S(x) is connecting the discrete spins (atoms) of the material.
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Taylor expansion

The advantage of the continuous field is that we can make a

Taylor approximation

When the distance € between spins is small, we have (Taylor expansion)

Sui1 ~S=+ed,S+ %afs, S, —S.

This assumes that
o There is a continuous field S(x).

@ Neighbouring spins differ only a little.

Example (Use the Taylor approximation in the expression for the exchange

energy)

J
Eex = _5 Zsa . (Sa—i-l +Sa—l) N
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Exchange energy (continuum)

Exchange energy

Use the Taylor expansion in the exchange energy

& J
Eex=—1) (|S|2 + 55@35) — —56/5 - 9?Sdx

Since M ~S we have EeXN—/M-andx

and this gives, by a partial integration

A
EeX = M_Sz /8XM . 8XMCIX.

A is the exchange constant (parameter).

Eex is non-negative.

o Its minimum (perfect alignment, 9, M = 0) lies at zero.

All directions in space, for M, are equivalent.
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The nonlinear o-model

A system with the energy Eex and M? = const. is called the nonlinear o-model.

Exercise (O(3) invariance of Eey)

(o) Write Eox using the components M = (My, Ma, Ms). (b) Consider a uniform
rotation for M and show that Ecx remains invariont.
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Magnetocrystalline anisotropy

Materials are anisotropic in a natural way, e.g., due to the crystal structure.
Anisotropic contributions come from relativistic effects.
Some types of anisotropy are simply modelled.

Easy-plane anisotropy

The energy term (K > 0 the anisotropy parameter)

Ea = K /(M:s) dx

M2

favours the states where M lies on the plane (12), i.e., M3 = 0.

Easy-axis anisotropy

K
E,= / (M? — M3) dx

M2

favours the states where M is fully aligned along the third axis, i.e., M3 = £M;
or M = (0,0, £M,).
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Examples. Minima of anisotropy energy.

Example (easy-plane anisotropy)

(a) For the easy-plane anisotropy, give all minimum energy solutions.

(b) Show that the energy is invariant with respect to rotations of the vector M
in the (12) plane.

Example (easy-axis anisotropy)

(a) Write the easy-axis anisotropy formula in a manifestly non-negative form to
show that E; > 0.

(b) Give all minimum energy solutions (based on that formula).
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Energy and length scales

In three-dimensions (3D), we have the exchange energy

A
EeX:W/au’M.a,U«MdBX7 /~]/:1a273

Question (Write explicitly the exchange energy density)

Note that summation is implied for the repeated index [i.

Total energy

In a simple model we assume a ferromagnet with exchange and anisotropy
energy. For a 3D magnet,

A K
E=Eex+E.= W/(?MMw?HMdgx—i—W/(M?—Mg)dgx.

s

Units for the physical constants A :J/m, K : ]/m3
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Dimensional analysis

The length scale of this model

The two energy terms indicate a natural length scale

A
low =4/ —.
DW Pe

Example (For A= 10"11]/m, M, = 105 A/m,K = 4 x 10°J/m?)

We calculate /pw =5 x 1072 m = 5nm.

We define the dimensionless magnetization according to

and we have the energy

E=A am.a—d3x+/</(1—m§)d3x
Oxy  Oxy

Om Om
:K[K%W/axﬂ B, 3x+/(1—m§)d3X}
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Dimensionless form of energy

We define dimensionless space variables (i.e., scale space by {pw)
Xp = E,u pw

and have the energy

E= (Ktiw) U d,m - 9,md*¢ + /(1 —m§>d35} :
We write K3 = Alpw, and re-instate the usual variable & — x to get
E = (2Alpw) [3 [O,m - 0,md3x + J [(1 —m3)d3x] .

The natural energy scale is (2A0pw)

Remark

This scaled energy form has no free parameter.
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Lecture 2b. Derivation of the time-independent equation

Static configurations of the magnetization

The magnetization m(x) of the material reduces to a configuration that
minimizes the magnetic energy E(m).

The equation for m(x) is obtained as the Euler-Lagrange equation for the
minimization of the energy, with the constraint

m2(x) =1.

The constraint is imposed via a Logrange multiplier \(x). [Raj, Sec. 3.3][FG,
Sec. 12.2]

For a demonstration, we consider the exchange interaction and we have to
extremize the functional

Lm] = /d3x {%@m - 0pm + ’\(2") (1 —m?)

L
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The Euler-Lagrange equation

The functional L is minimized for m(x) that satisfies the Euler-Lagrange equation

0.

“om 07 o,

oL d < oL > oL
=0 _ 2=
0,m om
We calculate

oL d
o= s (0,m)+m = 90,0,m+\xm =0

or

Am + \m = 0.
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We multiply the above by m in order to obtain the Lagrange multiplier,
m-Am+ m-m=0=A=-m-Am
and we use this to eliminate A in the field equation
Am— (m-Am)m =0=m X (m x Am) = 0.

The latter is equivalent to
m x Am = 0.

Equation for the minimization of the exchange energy. Give an example of
solution for the 1D equation

m x 0°m = 0.
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The Landau-Lifshitz (LL) equation - static sector

Form of the Landau-Lifshitz equation

Let us assume an energy functional £(m). We find
0E
m X f=0, f=——

e For f =h we recover the standard equation o?lmagnetlsm for a magnetic

moment M in an external magnetic field bh.
o For E = Eex—zfaxm 3mdxwehavef————({92

@ Solutions are m such that m || f.

Exercise (Static Landau-Lifshitz equation)

Assume an energy functional E and derive the static Landau-Lifshitz equation

under the constraint m2 = 1.
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The LL equation - exchange and uniaxial anisotropy

Energy (exchange and easy-axis anisotropy)
E:/EdX: %faxmaxmdx"' %f(l—mg)dx

The variational derivative

__E_i e _ﬁ_a2m+ &
F="5m = & \o(om))  om Mt mes

Landau-Lifshitz equation for exchange and easy-axis anisotropy

m X (Am + mge3) = 0.
—_———

f

on the model with exchange and anisotropy.
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https://docs.google.com/forms/d/e/1FAIpQLSdvpngX68SvCAXtaVclgv7IFrpFkwo3-Fp_kflb4YLyKRLr8A/viewform?usp=sf_link

Question (Find the uniform solutions)

o Uniform solutions are those for space-independent m.

In this case, f = m3es. In order to have a solution, we need m || f, that is,
m || e3 = m = =+é3 (pointing in the north or south pole).

® The uniform solution is called the ferromoagnetic state.

Question (easy-plane anisotropy)

What is the static Landau-Lifshitz equation for easy-plane anisotropy?
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Lecture 2c. The magnetic domain wall (DW)

Domain pattern

Sketch of domain wall

ms

MWMWM

Ty

A transition layer

@ Magnetic domains are regions where the magnetization is almost uniform.

@ A domain wall is the magnetization configuration between two uniform
states with different magnetization.
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The spherical parametrization for the magnetization

The spherical angles ©, ®

We can explicitly resolve the constraint m? =1,
m; =sin®@cos®, my =sinOsin®, m3 = cosO.

In a model with easy-axis anisotropy, we have two ground states,
m = (0,0,41), or © =0, 7 (north and south pole of the sphere).

We look for a topological soliton connecting the north and the south pole

We confine ourselves to the one-dimensional case m = m(x).
We try the simplest possibility of a meridian on the Bloch sphere

© =0(x), D= ¢p: const.
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A magnetic domain wall on the Bloch sphere

Example (Bloch wall)

For ¢o = m/2 we have
m; =0, ma(x) =sinO(x), ms(x) = cosO(x).

@ Draw a DW on the Bloch
sphere.

o Consider the variation of
the vector m in the space
variable x.
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A magnetic domain wall (DW)

The Landau-Lifshitz equation for m(x) (for exchange and easy-axis anisotropy
with anisotropy parameter k2)

momj — m3mfy + k*mamz = 0
m X (m” + k2m3é3) =0= mgm! — mimf — kK2mims =0

mimly — mem{ =0
Choose the case
m; =0, mp=sinO, m3=cosO.
thus
my = —sin©®O? +cosOO”, myj =-cosOO?-sinOO".
The first equation gives (the other two are trivially satisfied)

®" — k?sin® cos O = 0.
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Multiply by 20’
[(©)2 —K*sin?0] = 0= (6')? —k*sin?0 = C.

There are many solutions for the one-dimensional equation

We are only interested in localized solutions. We consider uniform domains for
|x| > 0, therefore, we require © = 0,7 and ©' = 0 at x = £00.

From the condition at x — 00 we get C = 0 and we have

O’ = +ksin ©.

e = +tan (2) .

Check that (for the plus signs)

The solution of the latter is

e For x = —00 we have © = 0 (north pole).

e For x = 00 we have © = 7 (south pole).
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Domain wall details

ms

llllli*TATTTTTTf’m

Static domain wall (DW)

Use trigonometric identities (for the half angle)

cos o,  my sin ¢g, mj3 = tanh(kx).

= cosh(kx) - cosh(kx)
That is valid for boundary conditions m(x = +o00) = (0,0, £1).

The figure shows m3(x) for a domain wall with ¢g = £7/2.
The width of the domain wall can be considered to be 1/I<, ie.,

low = \/AJK.
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Bloch and Neéel walls

There are many domain wall solutions

We get a different domain wall solution for every 0 < ¢9 < 2. Within this
model, the energy is the same for all walls.

Bloch wall, choose ¢g = iﬂ'/Q

1

m , m3 = tanh(kx) o

m =0, mg=

Néel wall, choose ¢g = 0, 7
1
cosh (kx)’

mg =0, mg= tanh(kx).
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Lecture 2e. Magnetostatic field

Maxwell's equations

A ferromagnet produces a magnetic field H,,. For static configurations M, this is
given by Maxwell's equations omitting time derivatives

V.-B=0, VxH,=0, B=yu(H,+M).

Apply the normalization

and write

V. (h,+m)=0, V x h, =0.

This is called the magnetostatic field h,,, because time derivatives have been
neglected in Maxwell's equations.
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Source of a magnetostatic field

Magnetic field due to m

Write Maxwell's equations as
V-h,=-V -m, V xh,=0.

Thus, the magnetic field source is -V -m.

Note the similarity between the equations for the magnetostatic field

with those for the field E of a charge density p in electrostatics. They are
identical under the correspondence

e p— -V -m
e E— h,.
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Quiz. Examples in simple geometries.

Example (Magnetic field of an infinite

cylinder)

Consider an infinite cylinder that is
uniformly magnetized along its axis
(m = e3). What is the magnetic field
produced?

Example (Magnetic field in a thin film)

Consider a thin film uniformly
magnetized perpendicular to the film
plane (m = e3). What is the magnetic
field produced?
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Magnetostatic field: examples

Example (Infinitely elongated cylinder uniformly magnetized along its axis)

The magnetostatic field is (note that V - m = 0)

Example (Thin film uniformly magnetized)

=
3

|
=

Consider an infinite thin film in the xy plane uniformly magnetized perpendicular
to the plane, m = e,. The magnetostatic field is

h,=-m= —e,.

Solutions of the latter type appear in examples in textbooks, e.g., in the case of
the field in an ideal capacitor.
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Quiz. Magnetostatic field of a wall.

Bloch wall, choose ¢g = :tTr/Q

1

im, m3 = :Etanh(kx).

m =0, mp=

This gives V -m = 0 and thus produces no magnetic field. It minimizes the
magnetostatic energy (not included in our model so far).

Neéel wall, choose @9 = 0,

1

+— =0 = 4 tanh(kx).
cosh(kx)’ m2 AL o)

mp —

This gives V -m = m) # 0 and thus magnetic field is produced. This is added
to the domain wall energy.
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A nontrivial example with a simple solution

Example

In the case of m = m(x), depending only on one space variable, we have the
solution

h,.(x) = —m,(x)é,.
This is because

o The equation V -h,, = —V - m reduces to the 1D form 0,h, = —0,m,
and it is satisfied.

o We assume m,(x) = 0 at x — £00, thus h,, satisfies the boundary
condition h,,(+00) = 0.

o At y,z — F00 we do not impose a particular boundary condition (we only
assume that h,, does not depend on y, 2).
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The exchange length

The magnetostatic energy

1
Em = §uo/M -H,,d3x.

A typical energy density is %MOMSQ (in ]/mg)
Comparison of exchange and magnetostatic energy gives rise to the definition of

the exchange length
| 2A
lex = /J/OM_? .

Example (Exchange length for Permalloy)

For Permalloy, A = 1.3 X 10_11]/m, M, = 0.69 x 106 A/m. We find
lox = 6.59nm.
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Rationalise using the exchange length
We may define dimensionless variables according to
x = xlex, h,=—.
We get the energy, in units of 2Alqy,
1 3 k2 2\ 43 1 3
E=§ aum-aumdx—i-? (1—m3)dx+§ m-h,d’x

where we defined (the “quality factor”)

o 2K
M2’

Remark

This form of the energy has only one parameter k?, the scaled (dimensionless)
anisotropy.
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