
Diffusion 
Literature. J.D. Murray, “Mathematical Biology” Sec. 11. 

Fickian diffusion 
Let us consider some molecules (or small particles, or microbes, etc) with concentration 

 (concentration is the number of particles per unit volume). If we consider that allc  
particles are on a line, the concentration, , is the number of particles per unit(x, )c = c t  
length. 
Now, consider that they are in motion with flux  (flux is the number of particles(x, )J t  
passing across a certain point  per unit time).x  
In Fickian diffusion 

   (1) −J ~ ∂x
∂c ⇒ J = D ∂x

∂c  
 (The flux is proportional to the gradient of the concentration and particles flow from 
higher to lower concentration.) 
 
Let us consider a region from  to  and consider the change in the number ofx1 x2  
particles 

(x, ) dx (x , ) (x , )∂
∂t ∫

x2

x1

c t = J 1 t − J 2 t   

Let us now consider an infinitesimal region  to getxx2 − x1 = Δ → 0  
dx J(x , ) (x , ) − −∂t

∂c =  1 t − J 2 t ⇒ ∂t
∂c = dx

J(x ,t)−J(x ,t)2 1 ⇒ ∂t
∂c = ∂x

∂J  
Using Fick’s law we obtain the Diffusion equation 

(D )∂t
∂c = ∂

∂x ∂x
∂c  

For constant  we have the simpler equationD  
   (2)∂t

∂c = D ∂x2
∂ c2

 
This is a linear partial differential equation. 
 
See ​this tool​ for solving the diffusion equation online. 
 

The solution of the diffusion equation 
Example.​ (a) Show that the following is a solution of the diffusion equation (2), 

(x, )  e ,  t ,   Q onst.c t =  Q
2(πDt)1/2

−x /(4Dt)2  > 0  : c  

(b) Plot the solution for various values of  (See ​here​.).t  

https://www.inutech.de/DiffpackSE/
https://www.desmos.com/calculator/gtuwynrkf6


(c) Note that the boundary conditions satisfied by the above solution at , and(± )c ∞ = 0  
the initial condition is . (  is the Dirac delta-function.)(x, ) Qδ(x)c t = 0 =  δ  
 
Let us consider an assemblage of objects (particles), for example, bacteria, animals, 
molecules etc. These may move around (e.g., animals in the woods, molecules in a 
chemical reaction, even people in a city) in an irregular way. Their motion is done in 
small steps, but, in the long run, they spread in the way of simple diffusion. 
 

Solution by Fourier transform 
We can find a solution  of (2) by starting from its Fourier transform(x, )c t  

(k, ) c(x, ) dxĉ t =  1
√2π ∫

∞

−∞
eikx t  

We have that (integrate by parts twice) 

dx (− k) dx − c(x, ) dx −  c(k, )1
√2π ∫

∞

−∞
eikx ∂x2

∂ c2
= 1

√2π
i ∫

∞

−∞
eikx ∂x 

∂ c = k2 1
√2π ∫

∞

−∞
eikx t = k2 ˆ t  

And 

dx 1
√2π ∫

∞

−∞
eikx ∂t

∂c = ∂t
∂ĉ  

Using the last two equations, the diffusion equation gives 
− D  c(k, )∂t

∂c = D ∂x2
∂ c2
⇒ ∂t

∂ĉ = k2 ˆ t  
that is, a differential equation with only time derivative. 
We have to choose initial condition, and we choose . We get the(k, ) Q/ĉ t = 0 =  √2π  
solution 

(x, )  eĉ t =  Q
√2π

−k Dt2

 
We apply the inverse Fourier transform and have the solution of the diffusion equation 

(x, ) c(k, ) dk e  dkc t =  1
√2π ∫

∞

−∞
e−ikx ˆ t =  Q2π ∫

∞

−∞
e−ikx −k Dt2

 

 
Exercise.​ Show that    .Dt kx Dt(k )k2 + i =  + i x

2Dt
2 + x2

4Dt  
 
Use the result of the last exercise to write 

= .e  dk∫
∞

−∞
e−ikx −k Dt2

dk  e e−x /(4Dt)2 ∫
∞

−∞
e−Dt(k+i )x

2Dt
2

= √ π
Dt

−x /(4Dt)2
 

 

Exercise.​ Show that (and use it in the above calculation) .dz∫
∞

−∞
e−az2 = √ a

π  

 



Combining the results we find 
(x, ) c t =   eQ

√4πDt
−x /(4Dt)2
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Random walk 
Suppose that a particle is released at at the time and let  the probabilityx = 0 t = 0 (x, )p t  
for the particle to be at position  at the time . Suppose that our particle moves by x t xΔ  
in a time interval .tΔ  
Let the particle be at position  at the time instance . Then at the time  it shouldx t tt − Δ  
have been either at  or at .xx − Δ xx + Δ  
We suppose that the particle moves right with a probability  and left with a probabilitya  

. Of course, .b a + b = 1  
We have 

(x, ) a p(x x, t t) b p(x x, t t) p t =  − Δ  − Δ +  + Δ  − Δ  
We consider this random walk with  (unbiased random walk).a = b = 2

1  
Write the Taylor expansion 

(x x, t) p(x, ) Δt Δx (Δt) (Δx)  p + Δ t + Δ =  t +  ∂t
∂p +  ∂x

∂p + 2
1 2

∂t2
∂ p2

+ 2
1 2

∂x2
∂ p2

+ . . .  
We substitute and have 

(x, ) a [p(x, ) Δt Δx (Δt) (Δx)   ] b [p(x, ) Δt Δx (Δt) (Δxp t =  t −  ∂t
∂p −  ∂x

∂p + 2
1 2

∂t2
∂ p2

+ 2
1 2

∂x2
∂ p2

+  t −  ∂t
∂p +  ∂x

∂p + 2
1 2

∂t2
∂ p2

+ 2
1

(x, ) (a ) p(x, ) a )Δt  (a )(Δt) − )Δx (a )(Δx)  p t =  + b t − ( + b ∂t
∂p + 2

1 + b 2
∂t2
∂ p2

+ ( a + b ∂x
∂p + 2

1 + b 2
∂x2
∂ p2
⇒  

− t  (Δt) (Δx)  0 = Δ ∂t
∂p + 2

1 2
∂t2
∂ p2

+ 2
1 2

∂x2
∂ p2

 
We want to obtain a ​continuous​ model in space and time, and we thus let x ,Δ → 0  

.tΔ → 0  
We choose 

lim
Δx,Δt→0 2Δt

(Δx)2

= D  

where we assume that  is a constant.D  
We obtain the diffusion equation for the probability ,p  

Δt) D− ∂t
∂p + (  

∂t2
∂ p2

+  2Δt
(Δx)2

∂x2
∂ p2

= 0⇒ ∂t
∂p =  ∂x2

∂ p2
 

 
Exercise.​ The solution of this equation is . Show that(x, )   ep t = Q

2√πDt
−x /(4Dt)2

  

(x, ) dx Q∫
∞

−∞
p t =   



for every time . We can choose when  is to be interpreted as probability. Ift Q = 1 p  
we can interpret it as the number of particles released at  at the time .=Q / 1 x = 0 t = 0  

 

Animal dispersal model 
● Insect dispersal. 
● Βiological invasions of mammals, birds, insects and plants. 
● Immigration of people. 

There may be an increase in the animal dispersal due to population pressure 
− (n) ∂ n,   J = D x  dn

dD > 0  
that is,  is an increasing function of population density .D n  
 
Let us choose 

   and    integer.(n) D ( ) ,    D ,D =  0
n
n0

m  0 n0 > 0 m > 0  
Question. What phenomena does the above form take into account? 
(Population pressure has an effect faster than linear.) 
 
Let us see the diffusion equation in one dimension 

[( )  ]∂t
∂n = D0

∂
∂x

n
n0

m
∂x
∂n  

This has an analytic solution 
 and (x, ) [1 ) ] ,   |x| λ(t)n t =  n0

λ(t) − ( x
r λ(t)0

2 1/m  ≤ r0 (x, ) ,  |x| λ(t)  n t = 0  > r0  
where  

(t) (t/t ) ,    r ,   tλ =  0
1/(2+m)  0 > 0  0 = r m0

2

2D (m+2)0
 

 
For  we havem = 1  

(x, ) [1 ) ],  λ(t) t/t ) , t ,    rn t = n0
λ(t) − ( x

r λ(t)0

2  = ( 0
1/3  0 = r0

2

6D0
 

0
> 0  

For  we havem = 2  
(x, ) [1 ) ] ,  λ(t) t/t ) ,  t ,  rn t =  n0

λ(t) − ( x
r λ(t)0

2 1/2  = ( 0
1/4 

 0 = r0
2

4D0
 0 > 0  

 
 
Exercise.​ Plot  for successive values of .(x, )n t t  
(a) For . Let us choose  and  thus Form = 1 ,  n 00D0 = 1  0 = 1 8r0

2 = 4 , λ(t) /2. t0 = 8  = t1/3  
these values, the end of the front is at Graph.λ(t) 2 .xf = r0 =  √3 · t1/3  
(b) For . Let us choose and  thus . Form = 2 , n 0D0 = 1  0 = 1 r0

2 = 8 , λ /2)t0 = 2  = (t 1/4  
these values, the end of the front is at .xf = √8 /2)(t 1/4  

https://www.desmos.com/calculator/37gdn80hkv


Graph. 
 
Note that 

● The population extends up to , it is zero for .λ(t)xf = r0 λ(t)x > r0  
● The solution represents a wave with front at .λ(t)x = r0  
● The derivative of  is discontinuous at the end of the front.nf  
● The propagation speed of the front is . Note that this will/dt x /dt r dλ/dtdxf = d f =  0  

be a decreasing function of time. 
 
Remark. The dispersal patterns for grasshoppers exhibit a behavior similar to this 
model.  
 
Exercise.​ Verify the solution for the above model for .m = 1  
 
Question.​ In which cases would we expect higher values of the integer  in the animalm  
dispersion model? 
 
 

Diffusion in 3D 
In the 3D space we write the law of conservation of mass in a volume asV  

(r, ) dv − s ∂
∂t ∫

 

V
c → t = ∫

 

S
J
→

· d→  

where  is the surface enclosing the volume (on the left side is the rate of change ofS V  
the mass and on the right side is the flux through the surface). 
We apply the divergence theorem (*) to the surface integral and have the volume 

integral  .s ∇ dv∫
 

S
J
→

· d→ = ∫
 

 V

→
· J

→
 

Using the latter result, we obtain 

 dv − ∇ dv ( ) dv  ∫
 

V
∂t
∂c = ∫

 

 V

→
· J

→
⇒ ∫

 

 V
∂t
∂c +∇

→
· J

→
= 0  

Since the volume is arbitrary the integrand must be zero (we obtain a continuityV  
equation) 

.∂t
∂c +∇

→
· J

→
= 0  

 
Fick’s law in 3D would be 

− ∇cJ
→

= D
→

 

https://www.desmos.com/calculator/jv2hqrdmdb


Substitute this in the continuity equation and obtain the Diffusion equation in 3D 
(D∇c)∂t

∂c =∇
→ →

 
or  

,    if  is constant. Δc∂t
∂c = D D  

 
Example.​ (Animal dispersal) 
Let  the population density.n   
There may be an increase in dispersion due to population pressure 

− (n) ∇n,      J
→

= D
→

 dn
dD > 0  

that is  is an increasing function of population density .D n  
Let us choose 

 and  integer.(n) D ( ) ,         D , nD =  0
n
n0

m  0  0 > 0 m > 0  
 
Exercise.​ Write the animal dispersal model for grasshoppers that disperse radially on 
the plane. Give the solution of the model. 
 

In the solutions that we studied, the total population remains constant, . dv N∫
 

V
n =   

Gauss' divergence theorem (*) 
[Marsden, Tromba, Sec. 8.4] 
Let W be a symmetric elementary region in space. Denote by the oriented closedW∂  
surface that bounds . Let  be a smooth vector field defined on . ThenW F

→
W  

(∇ ) dV  S.∫
 

W

→
· F

→
=  ∫

 

∂W
F
→

· d
→

 

(Elements of the proof.) 
Let , thus .i j kF

→
= P

→
+ Qˆ + Rˆ ∇

→
· F

→
= ∂x

∂Q + ∂y
∂P + ∂z

∂R  
Assume a cubic volume and let two parts of the surface and that have oppositeV S1 S2  
orientations, for example, S − S .k̂ 1 = k̂ 2  
We have the following 

dx dy dz (R ) dx dy  dx dy  dx dy  k dS S. ∫
 

V
∫
 

 
∫
 

 
∂z
∂R = ∫

 

S
1 − R2 = ∫

 

S1

R + ∫
 

S2

R =  ∫
 

S
F ·

→ ˆ = ∫
 

S
F
→

· d
→

 

where on  and  on .S Sd
→

= k̂ 1 S1 S − Sd
→

2 = k̂ 2 S2  



Reaction-Diffusion equations 

Derivation 
When mass can be created or annihilated in the volume , then the law conservationV  
of mass is 

(r, ) dv − s  dv∂
∂t ∫

 

V
c → t = ∫

 

S
J
→

· d→ +  ∫
 

V
f  

where  is a source of mass (for example, for  and , we have , i.e.,f f = 1 J = 0 c/dt 1d =   
constant increase of concentration). 
In general, .(c, , )f = f x→ t  
We apply the divergence theorem (*) to the surface integral and have the volume 
integral 

( ) dv ∫
 

 V
∂t
∂c +∇

→
· J

→
− f = 0  

Since the volume is arbitrary the integrand must be zeroV  

∂t
∂c +∇

→
· J

→
= f  

Thus, we have a more general differential law of mass conservation. 
 
If we assume Fick’s law, then we obtain 

(D∇c)∂t
∂c = f +∇

→ →
 

 
Example.​ We have applications in the following. 

● In an ecological context, where  is the population density,  could represent thec f  
birth and death processes. 

● In an epidemic,  may be the infected and  could represent the new infectionsc f  
and the recoverings. 

● In cancer models involving mutating cancer cells. 
● In animal dispersal models. 

 
Make sure you understand the parameters of the problem. Consider that (and explain 
why) 

●  can be a function of  and .D r→ c  
●  can be a function of  and , that is, .f , tr→  c (c, , )f = f r→ t  

 
 



Generalization.​ We can imagine a system with many species and the respective 
concentrations , so that the concentration is a vector . We then have a system ofci c→  
equations as a reaction diffusion system. Note that, in this case,  is a matrix.D  
 

Fisher-Kolmogorov equation 
For logistic growth of a population ,n  

(n),     f (n) r n (1 )dt
dn = f  =  − n

K  
where  is the linear reproduction rate and  is the carrying capacity of ther K  
environment. 
 
Exercise.​ Plot the solution of the logistic model and show graphically its dependence on 

., Kr   
The solution is . Note that . ​Graph.(t) n =  n K e0

rt

K + n (e −1)0
rt (t )n = 0 = n0  

 
Let us consider a model with diffusion where the population follows the logistic growth. 
For diffusion parameter  and for  giving logistic growth we have theD f  
reaction-diffusion model 

n (1 )  Δn,     n (r, )∂t
∂n = r − n

K + D  = n → t  
known as the Fisher-Kolmogorov equation (Fisher (1937) proposed the 
one-dimensional version as a model for the spread of an advantageous gene in a 
population and Kolmogorov et al (1937) studied the equation). 

https://www.desmos.com/calculator/8tc7brtzl4

