Lecture 3.

Continuous systems

Literature
e H. Goldstein, "Classical Mechanics” (Chapter 12.1 - 12.3)
o J.D. Logan, "Applied Mathematics” (Sec. 3.4)
e .M. Gelfand, S.V. Fomin, "Calculus of Variations” (Sec. 35, 38.1)
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Lecture 3a. A many-body problem

Assume particles of mass m on an elastic (massless) rod that can undergo
longitudinal displacements and let 7); be the displacement of particle i
from its position. Then the kinetic energy of the system is

T = ;Zmnlz

The potential energy is the sum of the potential energies of each elastic

part (spring) connecting neighbouring particles
V=3 3 ks =)
2 i i+ i
The Lagrangian of the system is

L=T_—V = iz [m77,2 — k(g1 _771‘)2]

i
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Many close packed particles

The Lagrangian is also written as

Z a 7] (771+1 771>

where « is the separation between particles.
Define

e [t =m/a the mass density,
@ Y = ka Young's modulus,
o & = (M1 — M)/ the extension per unit length.

In the case that the particles are very close to each other o < 1 all
above quantities are expected to take non-infinite values (for a — 0).

Stavros Komineas Mathematical Modeling



Continuum approximation for the Lagrangian

[n the limit a — O the discrete position index i becomes a continuous
variable x, and 7; — n(x). Furthermore,

i+1 — )i — d
Mt =1, Nx+a) n(X)_>d77’ for o — 0

(o4 (¢ X

The Lagrangian, that is a sum over the particles, becomes an integral
over the variable x with o = dx being the differential.

Lagrangian for a continuous elastic rod

-y [W—Y(%ﬂ
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Continuum approximation for the equation of motion

For the particles we have the Euler-Lagrange equations

mn; — k(77i—1 =20+ 77i+1) =0.
This is also written as

i1 — 21 i
Tr'j,-—kan 1 Z+77+1 —o.
a (o

The wave equation

In the limit o« — 0 we have

dQn d277
— —Y—=0.
Hae ~ e
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Equation of motion. Method of small parameter.

Start from the Euler-Lagrange equations for the discrete particles

mij; — k(-1 — 21; + Mip1) = 0.

Procedure.

@ Assume a small parameter € and define the position variable as
x; = i€, such that this becomes continuous for € = 0 (x; = x).
@ Define rescaled parameters
m = eM, k = 52

€

o Assume a continuous field 77(x) with 7; = 1(x;). We have the
approximations

2

€
n(xe1) = n(x) £en'(x) + 577”()(1) +0(e%).
Thus
Mot — 20+ M1 = €0 + O(€%).
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Equation of motion

Substitute the Taylor approximations and the rescaled parameters in the
equation,
€ (Mn — Kn”) =0.

The wave equation

In order that the approximation is consistent to order O(€), the system
should satisfy

(Note. M and p are identical as are K and Y.)
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Lecture 3b. Action for a continuous system

In the example with the rod, we notice that
o The unknown is a function of two variables 7 = 1(x,t).

e The Lagrangian in an integral over a Lagrangian density

dn d
L=20(n2 2 1),
dx’ dt

e Hamilton’s principle must be formulated over an action given by a

2
I:/ /dedt.
1

double integral
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Functionals of several variables

Let a functional J that depends on a function u = u(x,y)

Ju] = //F(x,y,u,ux,uy) dxdy.
R

Assume u € A and the boundary condition on the boundary C of A

U(X7)’) :f(XLV)'

The action for a continuous system is a multiple integral, as in the above
form.
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Extrema for functionals of several variables

For an increment €h(x,y) in u we have the necessary condition for an
extremum

d
&J[u + 6h]€:0 = 0

Using Green's theorem we obtain

0 0
// F, — —F, — —F, | hdxdy + /(—hFu dx + hFy,dy) = 0.
R ax 8_)/ 7 C Y

The integral on C is zero because h = 0 on the boundary.
Using an extension of the fundamental lemma of the calculus of
variations we have the following.

Euler-Lagrange equations for a functional of two variables

S
Coox ™ oy v
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Example

Find Euler’'s equation for the functional

// l:—u +—u + p(x,y)u| dxdy = 0.

Uex T Uyy = p(X7.V)'

Solution. This is

It is called the Poisson equation.
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Action and Euler-Lagrange equations for a continuous system

For a Lagrangian density £, defined for a function 1(x,t), the action is

I—/ L dxdt.

Vanishing of the first variation gives the following.

Euler-Lagrange equation for a continuous system

o (LY, 9 ( L\ 0L,
dt \ In dx \ 9(0,n) on

This gives a partial differential equation for 17 = 7(x, t).

Example

We have seen the Lagrangian for an elastic rod. Derive the
Euler-Lagrange equation.
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Conservation laws

We consider a field of many variables x; and the time, u(x;,t), and a
Lagrangian density £(u,d,u;), where u; = Ou/0x;.

We may derive a conserved quantity as follows (we sum over V).

dl 6£ 8/3 Z <d8£ daL’), oc. oLC.
u
Gul,

o at0e T, 0a, ) T ou, e

where the Euler-Lagrange equation was used in the last step. We have

dL _d (LN 4 (0L,
dt  dt\au) " dx, \Ou,"
d (0L . d oL .
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Energy

We integrate over all space and we may apply the divergence theorem in
the second term. For fields that vanish at spatial infinity we obtain that

the energy is conserved

£IO, EZ/(@(J—,C)dX.
dt ou

Example
Energy for the eave equation The Lagrangian density for the eave
equation is

_Lla o
L= 2 (uu Yux), Uy

The corresponding energy is

E=%/@f+mﬁm

_ou
- Ox
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