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Lecture 2a. Canonical Momentum

Assume a system with variables y;,y/ and a functional

b
J[yla---vyn] :/ F(x,yi,y;)dx.
a

We define the canonical momentum corresponding to y; as

OF
= 1

Then, the Euler-Lagrange equations read

dpi _ OF

= — (system of 2nd order equations).
dx Oy;
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Energy

The total differential of F is

dF ~—~[(OF , OFdy\ OF
dx_z<(9y1yl+a dx>+8x

i

Using the Euler-Lagrange equations, we obtain

OF
dx <Z Oy /y’ ) ox 0-

For OF /Ox = 0 we have the conserved quantity (Energy)

OF
E(Yiayz{) = Zy'/&T/ - F(,yhyz()‘
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Example

Let the Lagrangian of a particle moving in one-dimension in a potential
V(x)

The energy is

X

Let the Lagrangian of a particle moving on the plane, described by polar

coordinates (r,@),
L= %m(ﬂ +26%) —V(r,0).

The energy is
1 .
[E = 3™ <i2 +r° 92) +V(r,0).
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Hamiltonian

Using Eq. (1) for the definition of the canonical momenta we can write

the y/ as functions of the p/ (and x,y;),

assuming that the Jacobian of transformation is nonzero.

Eliminate the y! using the p; in the energy function and write this
function (called the Hamiltonian) as

7)’17Pz Z%Pt _F 7.yhyz)

where the y/ are regarded as function of y;, p;.
Take the differential of H

OF OF
dH = pdyi+> yidp—dF = ... = —adx—z 8—ydyi+2 v, dp;.
i i i ! i

This gives the relations
oH OF  OH _ OF  OH
ox  Ox’ dy: Oy aPz I
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Hamilton's equations

We recall the Euler-Lagrange equations and use them in the last relations.

dy; OH dp; OH
dx  dp’  dx Oy
This is also called the canonical system of the Euler equations or

Hamilton's equations.

Suppose that H does not depend explicitly on x. Then, using Hamilton's

equations we find

dH Z OHdy, | OHdp\ _
Oy; dx 8p,-dx T

If F does not depend on x explicitly, the function H(y;,p;) is a first

integral of Hamilton's equations.
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Conservation of momentum

Hamilton’s equations show that if H does not depend on some coordinate
Yk then the corresponding momentum py remains constant

d
2y = p : const.
dx

Exercise

What happens if H depends explicitly on x? What is the derivative of H
with x?
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Example (Harmonic Oscillator)

Lagrangian and Hamiltonian

2

1
H(x,p) = L2 + —kx%

1 :2 1 2
’ 2m 2

L(x,x) = —mx* — —kx

2 2

Example (Conserved momentum)

Consider a particle moving on the plane in potential V(y). The
Hamiltonian is ) )
Px TP
H(xypopy) = =5 = + V().

The momentum p, is conserved

dpy
dt

=0.
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Example (Lagrangian containing total derivatives)

Assume a particle on the line of on the plane with position (x(t),y(t)).
Try to find Euler's equations for a hierarchy of Lagrangians.

L(x,x) = 2 =
L(x, %) = x, L(x,%) = &

L(x,y, x,y) = yx.

Stavros Komineas Mathematical Modeling



Lecture 2b. Dynamics for a complex variable

We consider a complex variable W

Its dynamical equation is given by
iV = —wyV, wp : constant.

This linear equation has solutions W (t) = Wye'“"". The Lagrangian that

gives the above model is
L=i0*T — wyUT*

where W™ is the complex conjugate of W.

Exercise

Show that the same model is given by the real-valued Lagrangion
L= é(\il*\ll — PT*) — wo T
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Canonical momenta

Let us consider U* as the variable of the problem. The canonical
momentum is

o
G

That is, ¥* and iV are canonically conjugate.

=1

P+

Hamiltonian

Considering the Hamiltonian H = woWW*, we have the equations of
motion

OH

iU =
opy

= 0" = woU*.
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Models with damping

Newton’s law for a harmonic oscillator

mx = —kx.

In a Hamiltonian form, this is

dp OH . PPl
7:—77 :m, H:7+7k .
a ox PO 2m 2
Let us add an extra term on the rhs (a force)
d OH A
we__T_2 or X = —kx — Ax
dt Ox m
We show that the energy is not constant under the modified equation
dH
— =...=-M*<0.
dt )
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A damped system

Let us consider a Hamiltonian H(x,p) and the system of equations

Decreasing energy

We can show that the Hamiltonian function of the system along a

solution path is a decreasing function of time

dH OH\?%  [0oH\?
o= (=) () <o
dt Ox Op
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A Hamiltonian system including damping

Let us consider a Hamiltonian H(x,p) and the system of equations

_OH_OoH . OH OH
T o ox’ P T T op

Exercise (Decreasing energy)
Show that the energy of the system along a solution path is o

decreasing function of time

dH

— < 0.
dt

Non-conservative models

In general, we could add any type of term on the right-hand-side of
Hamilton's equations, modifying the conservative system

LM
X_ap7 P = 8X X,P)-
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Damping in a system with a complex field

Let us consider a Hamiltonian H(W¥, U*) and the system of equations
OH .,  OH

v’ G

They are equivalent if H € R.

U= —

Decreasing energy
We can show that the energy of the system along a solution path is a
decreasing function of time

dH OH OH

e

Note that 2% € RR.

Exercise
Write explicitly the system of equations shown in the beginning of this
poge.
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Stability of paths

Definition

A function V(x) is called positive definite in a neighbourhood A of
x=0if V(x) >0 for all x# 0 in A and V(0) =0

An example is given by the Hamiltonian for a harmonic oscillator.

Definition (asymptotic stability)

Let x* be a solution of the system x = F(x). We say that x* is
asymptotically stable if there exists & and a time fg such that

[|x(to) — x*|| < § = lim ||x(t) — x*|| — 0.
t—00

The definition can be generalised for a non-constant solution x™(t).
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Lianunov functions

Theorem

Let x*(t) = O be a solution of the system
x = F(x)

where F(0) = 0. Then, x* is asymptotically stable if there exist V(x)
with the following properties in some neighbourhood of x = O.

(i) V(x) and its partial derivatives are continuous, (i) V(x) is positive
definite, (i) V(x) is negative definite.

Such a function V is called a Liapunov function for the system.
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Example

Find a Liapunov function for the system
x=—x— 2y, y=xy—y°.
Solution. Try the function V(x,y) = X2 + ay2. Then
V=-22+ 2(a — 2)xy2 = 2ory4.

If we choose a = 2, then V(x,y) has the properties of a Lianunov
function.

This shows that the solution of the system (0,0) is asymptotically stable.
That is, every trajectory starting in the neighbourhood of this solution will
approach it as t — 00.

Exercise
Give an example of a Lianunov function and a corresponding dynamical

system based on the Hamiltonians that we saw earlier.
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