
LAYER DYNAMICS FOR THE ONE DIMENSIONAL ε-DEPENDENT

CAHN-HILLIARD / ALLEN-CAHN EQUATION

D.C. ANTONOPOULOU†‡, G. KARALI∗‡, AND K. TZIRAKIS‡

Abstract. We study the dynamics of the one-dimensional ε-dependent Cahn-Hilliard / Allen-
Cahn equation within a neighborhood of an equilibrium of N transition layers, that in general does
not conserve mass. Two different settings are considered which differ in that, for the second, we
impose a mass-conservation constraint in place of one of the zero-mass flux boundary conditions at
x = 1. Motivated by the study of Carr and Pego on the layered metastable patterns of Allen-Cahn
in [11], and by this of Bates and Xun in [6] for the Cahn-Hilliard equation, we implement an N -
dimensional, and a mass-conservativeN−1-dimensional manifold respectively; therein, a metastable
state with N transition layers is approximated. We then determine, for both cases, the essential
dynamics of the layers (ode systems with the equations of motion), expressed in terms of local
coordinates relative to the manifold used. In particular, we estimate the spectrum of the linearized
Cahn-Hilliard / Allen-Cahn operator, and specify wide families of ε-dependent weights δ(ε), µ(ε),
acting at each part of the operator, for which the dynamics are stable and rest exponentially small
in ε. Our analysis enlightens the role of mass conservation in the classification of the general mixed
problem into two main categories where the solution has a profile close to Allen-Cahn, or, when
the mass is conserved, close to the Cahn-Hilliard solution.

1. Introduction

1.1. The equation. In this paper, we examine the dynamics of the Cahn-Hilliard / Allen-Cahn
equation

(1.1) ut = −δ(ε)
(
ε2uxx − f(u)

)
xx

+ µ(ε)(ε2uxx − f(u)), x ∈ (0, 1), t > 0,

in a neighborhood of a layered equilibrium parameterized by a small positive constant ε.
The nonlinearity f(u) = F ′(u) is the derivative of a double equal-well potential F taking a

non-degenerate global minimum value zero at u = ±1, where

F (±1) = f(±1) = 0,(1.2)

f ′(±1) > 0,(1.3)

F (u) > 0 for u ∈ (−1, 1).(1.4)

We define, for simplicity,
f(u) := u3 − u,

which is a typical example for a potential F (u) := 1
4(u2 − 1)2. However, many of the results are

valid for more general nonlinearities.
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The initial condition

u0(x; ε) =: u(x, 0), x ∈ (0, 1),

is assumed layered with respect to ε which stands as a measure of the layers width corresponding

to a time scale proportional to eCε
−1

for C > 0, and therefore, to very long times as ε → 0 where
the solution is expected to change very slowly; see in [11] for the analogous considerations on the
Allen-Cahn equation.

We introduce the positive constant δ(ε) > 0 and the non-negative one µ(ε) ≥ 0 in order to
control the coexistence of the 2 operators in terms of ε. Moreover, we impose the presence of
the Cahn-Hilliard part in the combined model as δ(ε) 6= 0, while for δ(ε) := 1 and µ(ε) := 0 the
Cahn-Hilliard equation stands as a special case.

Equation (1.1) is a gradient flow for the associated free energy with respect to an ε-weighted
metric. In particular, the standard Allen-Cahn equation is written as

ut = (∆− ε−2I)u =: Aε(u),

the Cahn-Hilliard equation, after rescaling, as

ut = (−ε∆)(∆− ε−2I)u = (−ε∆)(Aε(u)),

while (1.1), as

ut = (ε2(−δ(ε)∆ + µ(ε)I))(∆− ε−2I)u = (ε2(−δ(ε)∆ + µ(ε)I))(Aε(u)),

and the ε-weighted metric is given by

< f, g >ε:= (f, (ε2(−δ(ε)∆ + µ(ε)I))−1g),

for (·, ·) the L2((0, 1)) inner product; see also the discussion in [19].
A main result of our work is the analysis of the spectrum of the linearized operator, where a

crucial spectral condition

ε2µ(ε) ≥ O(δ(ε)),

is determined. Considering the CH/AC equation (1.1), in higher dimensions, and for a specific
choice of the coefficients µ(ε) := ε−2, δ(ε) := O(1), which we stress that satisfy the above
inequality, motion by mean curvature was derived on the sharp interface limit ε → 0, in [19], as
in the Allen-Cahn equation limiting dynamics. The sharp interface limit problem of the multi-
dimensional Allen-Cahn equation (which is equation (1.1) for δ(ε) := 0, and µ(ε) := ε−2) as ε→ 0,
is motion by mean curvature given by V = κ, where V is the velocity of the interface in normal
direction, and κ the mean curvature of the interface. In [19], the authors introduced in the Allen-
Cahn equation the Cahn-Hilliard operator with weight δ(ε) = O(1), significantly smaller than ε−2

as ε→ 0, and proved that the mixed model exhibits on the limit a qualitatively analogous behavior
with velocity proportional to κ. Due to lack of comparison principle for the CH/AC equation,
convergence was shown until the first singularity of the limiting evolution occurs, by making, in
the proof, a formal asymptotic expansion rigorous with the help of linear stability in the spirit of
[1].

For the existence and regularity properties of (1.1), we refer to [20] where the Galerkin method
was adapted, while the stochastic version thereof was investigated in [5]. In more detail, in [20],
the initial and boundary value problem with Neumann b.c., constant coefficients, for ε := 1, posed
in space in D in dimensions d = 1, 2, 3, was written as a system for u and the chemical potential
v := ∆u − f(u). There, it has been proven that if the initial condition u0 is sufficiently smooth
(in H1(D)), then for any T > 0 there exists a unique regular solution (u, v) ∈ C([0, T ];H1(D)) ×
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L2([0, T ];H1(D)). Higher regularity for u in C([0, T ];H2(D)) was derived when u0 ∈ H2(D).
The authors in [5] proved local existence and uniqueness for the stochastic problem with non-
smooth multiplicative space-time noise with standard Neumann boundary conditions when posed
on rectangles in dimensions d = 1, 2, 3, by employing the Green’s function estimates of the linear
part of the operator. Moreover, when the noise diffusion coefficient satisfies a sub-linear growth
condition, they proved for d = 1 global existence of solution, for d = 2, 3 existence of maximal
solutions, and also derived space-time path regularity.

1.2. Physical motivation of the CH/AC equation. Let us describe first the main lines of the
physical motivation of the Cahn-Hilliard / Allen-Cahn model, from [21, 19, 5] and the references
therein.

An equation of the form (1.1) has been first analyzed in [19] as a mean field model of the
microscopic dynamics associated with adsorption and desorption mechanisms in the context of
surface processes; we also refer to [21, 5] for the detailed physical problem presentation. The
combined model describes surface diffusion including particle/particle interactions and adsorption
and desorption from the surface. It is noticeable that the mobility is completely different from
this of Allen-Cahn equation, which implies that the diffusion speeds up the mean curvature flow,
([18, 23]).

More analytically, the CH/AC mixed equation models two surface processes that take place
simultaneously. The Cahn-Hilliard operator represents the mass conservative phase separation
and surface diffusion in the presence of interacting particles, while the Allen-Cahn operator is
related to phase transition and serves as a diffuse interface model for the antiphase boundary
coarsening. Surface processes, such as catalysis, chemical vapor deposition and epitaxial growth,
typically involve transport and chemistry of precursors in a gas phase; unconsumed reactants and
radicals adsorb onto the surface of a substrate where numerous processes may occur concurrently,
for instance surface diffusion, reactions and desorption back to the gas phase.

The mathematical tools employed in the statistical mechanics models of surface processes are
Interacting Particle Systems (IPS), which are Markov processes set on a lattice corresponding to a
solid surface. Typical examples are the Ising-type systems, describing in the microscopic level the
evolution of an order parameter at each lattice site. The mesoscopic model in study is derived in
[21] from microscopic lattice models when the local mean field limit is considered. The energy of
the system is given by a Hamiltonian involving the interparticle potential which is assumed even,
rapidly decaying at infinity, and non-negative i.e. the interactions of the particles are attractive.
The assumption that the potential is non-negative is an important one from a physical point of
view, since it implies that clusters of particles are energetically preferred to totally disordered
structures. This is translated, in the mathematical statement of equation (1.1), to the condition
δ(ε) > 0 posed on the Cahn-Hilliard operator coefficient.

At large space/time scales and for long range potentials, it turns out that the small scale fluctua-
tions of the Ising systems are suppressed and an almost deterministic pattern emerges. In [19], the
macroscopic cluster evolution laws and transport structure have been rigorously derived. Therein, a
space-time diffusive scaling in ε was applied that described the long-time behavior of large clusters.
Random fluctuations, when included in the mesoscopic model, appear as stochastic higher order
corrections. In [5], the authors derived the stochastic non-linear equation version of this model by
inserting in the CH/AC equation a multiplicative space-time white noise with a diffusion coefficient
of linear growth stemming from the free energy and thermal fluctuations.
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The deterministic Allen-Cahn equation was proposed in [3] as a model for the dynamics of
interfaces of crystal structures in alloys. As far as the one-dimensional case is concerned, the
limiting behaviour was analyzed in [11, 14]. After a very short time, generation of many very
steep transition layers is observed. These well developed transition layers then start to move very
slowly, and each time a pair of transition layers meet, the two layers annihilate each other, and thus
the number of layers decreases gradually. Although those collision-annihilation process takes place
rather quickly, the motion of layers between the collisions is extremely slow and the solution exhibits
a metastable pattern. The situation is quite different in the multi-dimensional case, where such
metastable patterns hardly appear because of the curvature effect on the motion of the interface
as ε → 0; for rigorous justification of singular limits, see for example in [9], [12, 13], [22]. The
deterministic Cahn-Hilliard equation, proposed by [10], describes the evolution of transitions (mass
transfer) during the phase separation of alloys. In the case of only two layers, the exponentially slow
dynamics have been studied in [2], where a one-dimensional invariant manifold of slowly moving
states was constructed. More details of the phenomenon and the motion towards the boundary can
be found in [17], [16].

1.3. Main results. As it has been observed in [5], the operator at the right-hand side of the
equation (1.1) is strongly parabolic in the sense of Petrovsǩii and the bi-Laplacian since existing
(δ(ε) > 0) dominates, resulting to regularity properties identical to the Cahn-Hilliard equation (at
least in the stochastic setting). However, the sharp interface limit of the deterministic equation may
exhibit a different profile closer to this of the Allen-Cahn, [19]. The above, ignites a special interest
on the scaling of the chosen parameters δ(ε), µ(ε), and the motivation of a further investigation of
their influence on the dynamics of the layers.

It is well known that the Cahn-Hilliard equation with the standard Neumann boundary conditions
for u and its Laplacian is mass conservative in the sense that the integral of the solution in space
is time independent. In contrast, the Allen-Cahn equation with Neumann or Dirichlet boundary
is not satisfying such a property unless a non-local integral term is added, which is the case for
the mixed equation as well; this is not considered in this work, however it consists a future plan
in progress the detailed investigation of the dynamics for such a version, i.e., (1.1) with the extra
integral term.

Our main aim is to obtain the equations of motion and estimate the dynamics of a fixed number
of layers, when ε is sufficiently small, for the combined model (1.1), and in dimension one. For
this, when the initial and boundary value problem involves the Neumann conditions, and so mass
conservation is not holding true, the solution will be approximated into the manifold constructed
and effectively used for the Allen-Cahn equation in the classical result of Carr and Pego, [11]. Then,
by imposing mass conservation, not through the pde but replacing one only of the b.c. with an
integral one, we will apply the mass conserving manifold of Bates and Xun, [6, 7], which has been
proposed for the integrated Cahn-Hillliard equation. There, the derived initial and boundary value
problem for the integrated equation is identical to this of [6, 7], when µ(ε) := 0. We note that
the problem is of fourth order, since δ(ε) is not vanishing, while in dimension one the boundary
consists of only two well separated points where four boundary conditions are applied on, and could
be therefore of different type. In both cases we will determine the ode systems of the dynamics,
and investigate the main order terms with respect to the order in ε of δ(ε) and µ(ε), and stability.

The general approach for deriving the equations of motion, as a system of odes, consists of
specifying the approximate solution into a proper approximate manifold with a residual orthogonal
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to a set of approximate tangent vectors to the manifold. Differentiating in time the orthogonality
condition then yields the system describing the dynamics of the layers.

Let u be the solution of (1.1), with the standard Neumann conditions, ux = uxxx = 0 at x = 0, 1,
(non mass conserving case). Given a configuration

h = (h1, . . . , hN),

of exactly N layer positions, we will construct a function uh = uh(x) approximating a metastable
state of u with N transition layers. Here, we will use the parameterization of Carr and Pego, [11],
for the approximate manifold.

More precisely, the function uh will almost satisfy the steady-state problem of (1.1), that is
Aε(u

h) is very small, where Aε is the operator given by the right-hand side of (1.1)

(1.5) Aε(u) := −δ(ε)
(
ε2uxx − f(u)

)
xx

+ µ(ε)
(
ε2uxx − f(u)

)
=: −δ(ε)A1,ε(u) + µ(ε)A2,ε(u),

for

A1,ε(u) :=
(
ε2uxx − f(u)

)
xx
,

the negative of the Cahn-Hilliard operator, and

A2,ε(u) := ε2uxx − f(u),

the Allen-Cahn operator.
We shall then define the set of admissible layer positions by

Ωρ =

{
h = (h1, . . . , hN) :

ε

2ρ
< h1 < · · · < hN < 1− ε

2ρ
, and min

2≤j≤N
(hj − hj−1) >

ε

ρ

}
,

for some ρ small and independent of ε, which will be described in detail in the next section.
Moreover, we shall specify the N -dimensional manifold of approximate steady states

M := {uh : h ∈ Ωρ}.

The residual υ of the approximation is defined as orthogonal to N approximate tangent vectors to
M at uh.

Section 2.5 presents the equations of motion through the ode system (2.30) for the positions
hi, i = 1, · · · , N . The spectrum of the linearized CH/AC operator is investigated at Section 2.6,
and as well the positive definition of the induced bilinear form, when applied on the residual υ if
ε2µ(ε) ≥ C0δ(ε) for some C0 ≥ Cmin > 0 sufficiently large and specified through the supremum
in (0, 1) of |ε2(f ′(uh))xx| = O(1), see Main Theorem 2.4. Then, Main Theorem 2.8 at Section 2.7

estimates the velocities ḣi of the layers; at this technical part, we followed the approach of Bates
and Xun, [6].

Finally at Section 2.8, after a rather extensive calculus and using the spectral condition of the
linearized operator, we specify a wide class of µ(ε), δ(ε), for which the dynamics are stable, and
exponentially small in ε, cf. (2.46), (2.119), and Main Theorem 2.11 for the attractiveness and the
slow evolution of states within the slow channel defined by (2.113).

The second part of this manuscript is devoted, at Section 3, to the mass conserving layer dy-
namics, and the strategy applied is analogous to this in [6].
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Let M be a fixed mass in (−1, 1). Restricting one degree of freedom we impose a mass con-
servation property, and define the second approximate (N − 1)-dimensional manifold, which is a
submanifold of M, by

M1 :=
{
uh ∈M :

∫ 1

0
uh(x) dx = M

}
,

and further define the manifold

M̃ :=
{
ũh : uh ∈M1, ũh(x) =

∫ x

0
uh(y) dy

}
.

We impose the mass conservation condition
∫ 1

0 u(x, t)dx =
∫ 1

0 u0(x)dx = fixed, in place of the
b.c. uxxx(1, t) = 0. Then, for the integrated equation, we derive the CH/AC initial and boundary
value problem given by (IACH)-(IBC1). In the Appendix we discuss the well posedness of the mass-
conserving problem and derive a priori estimates by using the corresponding energy functional.

In Section 3.2, we specify the ode system for the equations of motion of the N − 1 layers and
estimate their dynamics, in the mass conservative case, see in Theorem 3.1.

Finally, at Section 3.4, we prove the Main Theorem 3.2, establishing attractiveness of the manifold
and stability of the dynamics, again for a wide class of µ(ε), δ(ε) for which the dynamics are stable,
and exponentially small in ε.

We have also included, at the end, an Appendix where we collected and proved various estimates
used throughout the text.

2. Non mass conserving layer dynamics

We supplement (1.1) with the standard Neumann b.c. on u and uxx, and consider the following
initial and boundary value problem

ut = −δ(ε)
(
ε2uxx − f(u)

)
xx

+ µ(ε)(ε2uxx − f(u)), x ∈ (0, 1), t > 0,

ux = uxxx = 0 at x = 0, 1, t > 0,

u(x, 0) = u0(x, ε), x ∈ (0, 1).

(2.1)

Let us point out that (2.1) does not conserve mass for any µ(ε) 6= 0 since in general

∂t

∫ 1

0
u(x, t)dx =

∫ 1

0
ut(x, t)dx =

∫ 1

0
µ(ε)(ε2uxx(x, t)− f(u(x, t)))dx = −µ(ε)

∫ 1

0
f(u(x, t))dx,

is not the zero function, while the solutions of the boundary problem

ε2uxx − f(u) = 0, 0 < x < 1,

ux = 0 at x = 0, 1,
(2.2)

are obviously steady states of (2.1); (2.2) follows by setting ut = 0 at the equation of (2.1) and
integrating in space twice using the boundary conditions.

We assume, therefore, in the context of Section 2, that µ(ε) > 0 for all ε > 0.

Remark 2.1. We observe that the free energy of the problem analyzed in this section is decreasing
in time.

Indeed, the relevant to the scaling of the standard Allen-Cahn operator

ε2∆u− f(u),
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free energy functional is defined as follows

(2.3) E(u) :=

∫ 1

0

(ε2|∇u|2

2
+ F (u)

)
dx.

Multiplying both sides of the equation of the i.b.v.p (2.1) with ε2∆u− f(u), integrating in space,
and using the boundary conditions, we derive

(ut, ε
2∆u− f(u)) =− δ(ε)(∆

(
ε2∆u− f(u)

)
, ε2∆u− f(u)) + µ(ε)‖ε2∆u− f(u)‖2

=δ(ε)‖∇
(
ε2∆u− f(u)

)
‖2 + µ(ε)‖ε2∆u− f(u)‖2,

(2.4)

where here and for the rest of the manuscript, (·, ·) denotes the L2((0, 1)) inner product, and ‖ · ‖
the induced L2((0, 1)) norm.

Differentiating in time, (2.3) yields

∂E(u)

∂t
=

∫ 1

0

(
ε2∇u∇ut + F ′(u)ut

)
dx

=

∫ 1

0

(
ε2∇u∇ut + f(u)ut

)
dx

=

∫ 1

0

(
− ε2∆uut + f(u)ut

)
dx

=− (ut, ε
2∆u− f(u)).

(2.5)

So, by (2.4) and (2.5), we obtain the free energy decreasing property for the combined model

∂E(u)

∂t
= −δ(ε)‖∇

(
ε2∆u− f(u)

)
‖2 − µ(ε)‖ε2∆u− f(u)‖2 ≤ 0,(2.6)

since δ(ε) > 0 and µ(ε) ≥ 0.

Besides the three homogeneous equilibria u = ±1 and u = u0 for the zero u0 of f in (−1, 1)
(u = 0 for odd f as in our special case), problem (2.2) has non-constant solutions for all sufficiently

small ε; see e.g. [17]. More precisely, if εn+1 ≤ ε < εn with εi := (−f ′(0))1/2/2πi, i = 1, 2, . . . ,
then problem (2.2) has exactly n pairs of non-constant solutions u±εi , 1 ≤ i ≤ n (u−εi = −u+

εi if

f is odd). For each i, the equilibria u−εi , u
+
εi have exactly i zeros at x = 1/2i, 3/2i, . . . , 1 − 1/2i.

The two solutions for i = 1 are monotone, and the other solutions for i ≥ 2 are oscillating taken
as rescaled reflections and periodic extensions of monotone solutions, they correspond to periodic
orbits around the origin on the phase plane and we speak of solutions with i internal transition
layers.

Since the internal transition layers of stationary solutions must have periodic spacing, the so-
lutions of (1.1) which reach patterns that are nearly piecewise constant, say with N transition
layers, but not periodic, they are close to a stationary state but they are not solutions of the steady
state problem and we do not expect them to remain at these patterns. We will concern with these
solutions yet not with their end-state but rather with their dynamics as long as they remain at
these “metastable” N -layered patterns.

2.1. The approximate manifold. First we note that assumption (1.3) ensures the existence of
an a > 0 such that f ′(u) > 0 for |u± 1| < a, so let us fix such an a > 0.

We will follow the strategy of the pioneering works of Carr and Pego [11], and Bates and
Xun [7] for the construction of the approximate manifold solutions; we refer also to the work of
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Antonopoulou, Blömker, Karali [4] for the Cahn-Hilliard equation with noise where this approach
was applied effectively in the stochastic setting as well.

For initial condition u0(x; ε) = u(x, 0) close to the manifold M, we will approximate the profile
of a metastable state of the solution u of (2.1) with N transition layers by piecing together the
stationary solutions of (1.1) satisfying the following boundary value Dirichlet problem for the
bistable equation,

(2.7)


ε2φxx − f(φ) = 0, |x| < `

2
+ ε,

φ
(
∓ `

2

)
= 0,

with ` > 0 denoting the distance between two successive layer positions.

Remark 2.2. We summarize briefly the properties of the solutions of (2.7), as established in [11],
cf. Prop. 2.1. therein:

There exists ρ0 > 0 such that if ε/` < ρ0, then

(i) a unique solution φε(x, `,+1) of (2.7) exists, with

φε(x, `,+1) > 0 for |x| < `/2, and |φε(0, `,+1)− 1| < a,

(ii) a unique solution φε(x, `,−1) of (2.7) exists, with

φε(x, `,−1) < 0 for |x| < `/2, and |φε(0, `,−1) + 1| < a.

Moreover, the functions φε are smooth and depend on ε and ` only through the ratio ε/`.

2.2. The approximate solution. Let us consider a smooth cut-off function satisfying

(2.8) χ : R→ [0, 1] with χ(x) = 0 for x ≤ −1, and χ(x) = 1 for x ≥ 1.

Given a choice of admissible layer positions h = (h1, . . . , hN) ∈ Ωρ , let

`j = hj − hj−1 for j = 2, 3, . . . , N, and `1 = 2h1, `N+1 = 2(1− hN ),

mj =
hj−1 + hj

2
for j = 2, 3, . . . , N, and m1 = 0, mN+1 = 1,

Ij = [mj , mj+1] for j = 1, 2, . . . , N.

(2.9)

We define the approximate solution uh for any x ∈ Ij , by

uh(x) =

[
1− χ

(x− hj
ε

)]
φε(x−mj , `j , (−1)j)

+ χ
(x− hj

ε

)
φε(x−mj+1, `j+1, (−1)j+1).

(2.10)

In order to ease notation, we suppress the dependence of uh on ε and omit hereafter the subscript
in φε by simply writing φ, and define

(2.11) φj(x) := φε(x−mj , hj − hj−1, (−1)j),

for φε the steady states presented analytically in Remark 2.2.
Moreover, we define

(2.12) χj(x) := χ
(x− hj

ε

)
.

The profile of uh is presented at Figure 2.1.
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|
h0

|
m1

0

1−

−1
−

|
h1

|
m2 |

h2
|
hj−1

|
mj |

hj
|
hj+1

|
mj+1 |

hN
|

mN+1

1
|

hN+1

uh = φj
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2ε

2ε

|
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|
h2

|
hj−1

|
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|
hj+1

|
hN

x

uh

Figure 2.1. Given a configuration h = (h1, · · · , hN ) of N layer positions, we construct uh by
piecing together steady state solutions of (2.7). We set uh = (1−χj)φj +χjφj+1 on [hj − ε, hj + ε]
(shaded areas). Note that h0 = −h1, hN+1 = 2 − hN , and m1 = 0,mN+1 = 1.

2.3. Properties of uh. Note that uh is a smooth function of x and h. In particular, for x ∈
[mj , mj+1], we have

(2.13) uhx =


φjx, mj ≤ x ≤ hj − ε,
χjx
(
φj+1 − φj

)
+
(
1− χj

)
φjx + χj φj+1

x , |x− hj | < ε,

φj+1
x , hj + ε ≤ x ≤ mj+1,

and so
(2.14)

uhxx =


φjxx, mj ≤ x ≤ hj − ε,
χjxx

(
φj+1 − φj

)
+ 2χjx

(
φj+1
x − φjx

)
+ (1− χj)φjxx + χjφj+1

xx , |x− hj | < ε,

φj+1
xx , hj + ε ≤ x ≤ mj+1,

where, from the definition of φj (see (2.7)),

(2.15) ε2 φjxx = f(φj), on [hj−1 − ε, hj + ε].

It is then straightforward to see that uh satisfy the bistable equation

(2.16) L b(uh) = 0, for |x− hj | ≥ ε, j = 1, 2, . . . , N.

where L b is the bistable operator

(2.17) L b(u) := A2,ε(u) = ε2uxx − f(u).

Notice also that by reflecting the solutions φ(·, `,±1) of (2.7) about the origin we can show that
they are even in x, and thus

(2.18) φx(0, `,±1) = 0,

which together with (2.10) and (2.8) yields

uhx(mj) = 0, j = 1, . . . , N + 1.

So, we obtain

(2.19) uhx(0) = uhx(1) = 0,

and, therefore,

(2.20)
∂

∂x
f(uh) = 0 at x = 0, 1.
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Moreover, we note that

uhj ∼ −uhx, as r → 0, uniformly on Ij := [mj , mj+1],

see Remark 4.9 for more details thereof.

2.4. The coordinate system. Following [11], we introduce a local coordinate system

u 7→ (h, υ),

in a tubular neighborhood of the approximate manifold M, defined by the decomposition

(2.21) u(x, t) = uh(t)(x) + υ(x, t),

with uh ∈M, and υ satisfying the orthogonality condition

(2.22) 〈υ, τhj 〉 :=

∫ 1

0
υ τhj dx = 0, j = 1, . . . , N,

where τhj are approximate tangent vectors to M at uh.
More precisely, let

(2.23) γj(x) := χ
(x−mj−ε

ε

)[
1− χ

(x−mj+1+ε
ε

)]
,

which yields that

γj(x) =

{
0, x /∈ (mj , mj+1),

1, x ∈ [mj + 2ε, mj+1 − 2ε].

The approximate tangent vectors are then defined through γj(x) by

(2.24) τhj (x) = γj(x)uhx(x)

which are smooth functions of x and h.
Considering differentiation, we introduce the notation

τhj,k :=
∂τhj
∂hk

and τhj,x :=
∂τhj
∂x

,

and observe that τhj,x = 0 at x = 0, 1, for j = 1, . . . , N.

2.5. Equations of motion. For a classical solution u = u(x, t) of (1.1), we will establish the
ODEs system for the dynamics of (h, υ), which is defined by (2.21)-(2.22).

This first order ODE system with unknowns the positions coordinates hk(t), k = 1, · · · , N
for each one of the N layers (fronts) will be derived by differentiating in time the orthogonality
condition (2.22). We will insert the Cahn-Hilliard / Allen-Cahn equation into the differentiated
condition and then we shall use linearization which will be given by the linear combination through
the weights δ(ε), µ(ε) of the C-H and A-C linearized operators respectively.

We differentiate (2.22), with respect to t, to get〈
∂tυ , τ

h
j

〉
+
〈
υ , ∂tτ

h
j

〉
= 0, j = 1, . . . , N.
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Using (2.21), and the substituting ut by the equation (1.1), together with the definition (1.5) of
the operator Aε, we obtain

∂tυ =∂t(u− uh)

=− δ(ε)
(
ε2uxx − f(u)

)
xx

+ µ(ε)(ε2uxx − f(u))− ∂tuh)− ∂tuh

=Aεu− ∂tuh = Aεu−
N∑
k=1

(∂
hk
uh)ḣk,

to arrive at the system

(2.25)
N∑
k=1

ajk ḣk =
〈
Aε(u

h + υ) , τhj
〉
, j = 1, 2, . . . , N,

where

(2.26) ajk :=
〈
uhk , τ

h
j

〉
−
〈
υ , τhj,k

〉
, j, k = 1, 2, . . . , N.

In the above, the subscripts k indicate differentiation w.r.t. hk, i.e.,

uhk :=
∂uh

∂hk
and τhj,k :=

∂τhj
∂hk

.

We expand

Aε(u
h + υ) = Aε(u

h) + Lhε (υ) − δ(ε)
(
fh υ2

)
xx

+ µ(ε)fh υ2,(2.27)

where Lhε (υ) is the linearization of Aε at uh, i.e.,

Lhε (υ) :=− δ(ε)
(
ε2υxx − f ′(uh)υ

)
xx

+ µ(ε)(ε2υxx − f ′(uh)υ)

=:− δ(ε)Lh1,ε(υ) + µ(ε)Lh2,ε(υ),
(2.28)

and

(2.29) fh(x) :=

∫ 1

0
(τ − 1) f ′′(uh + τυ) dτ.

Using (2.27), then the system (2.25) is written as

N∑
k=1

ajk ḣk =
〈
Aε(u

h) , τhj
〉

+
〈
Lhε (υ) , τhj

〉
− δ(ε)

〈(
fh υ2

)
xx
, τhj

〉
+ µ(ε)

〈
fh υ2 , τhj

〉
= − δ(ε)

〈
A1,ε(u

h) + Lh1,ε(υ) +
(
fh υ2

)
xx
, τhj

〉
+ µ(ε)

〈
A2,ε(u

h) + Lh2,ε(υ) + fh υ2 , τhj
〉

= − δ(ε)
〈
A1,ε(u

h), τhj
〉

+ µ(ε)
〈
A2,ε(u

h), τhj
〉

− δ(ε)
〈
Lh1,ε(υ) +

(
fh υ2

)
xx
, τhj

〉
+ µ(ε)

〈
Lh2,ε(υ) + fh υ2 , τhj

〉
,

(2.30)

for j = 1, 2, . . . , N .
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Remark 2.3. We note that as in the Allen-Cahn case, υ-independent exponentially small terms
in the dynamics (2.30) will be derived by the term

µ(ε)
〈
A2,ε(u

h), τhj
〉
,

due to the second order operator there. Of course µ(ε) will influence the result.
More specifically, as in [11] Lemma 3.3., when ρ in the definition of Ωρ is sufficiently small, we

observe that

µ(ε)
〈
A2,ε(u

h) , τhj
〉

=− µ(ε)

∫ hj+ε

hj−ε
(ε2uhxx − f(uh))uhxdx

=µ(ε)[F (uh)− 1

2
ε2(uhx)2]

hj+ε
hj−ε =: µ(ε)(aj+1 − aj),

(2.31)

where the difference aj+1 − aj is exponentially small in ε.
In our case, we also have the υ-independent term〈

A1,ε(u
h), τhj

〉
,

stemming from the Cahn-Hilliard part, which will be shown exponentially small as well.

Moreover, we apply (2.21) to (1.1) to get

(2.32) υt = Aε(u
h + υ)−

N∑
j=1

uhj ḣj .

As above, we expand in (2.32) the term Aε(u
h + υ), according to (2.27), to get

(2.33) υt = Aε(u
h) + Lhε (υ) − δ(ε)

(
fh υ2

)
xx

+ µ(ε)fh υ2 −
N∑
j=1

uhj ḣj

or discriminating between the CH and AC parts,

υt = − δ(ε)
[
A1,ε(u

h) + Lh1,ε(υ) +
(
fh υ2

)
xx

]
+ µ(ε)

[
A2,ε(u

h) + Lh2,ε(υ) + fh υ2

]
−

N∑
j=1

uhj ḣj .

(2.34)

According to Proposition 2.3 in [11], there exist ρ2 > 0, constants A0, C and b(ρ) = o(1) as
ρ→ 0+ such that if h ∈ Ωρ with ρ < ρ2, then:

(i) for j = 1, 2, · · · , N,(
A0 − b(ρ)

)2
ε−1 ≤

〈
uhj , τ

h
j

〉
≤
(
A0 + b(ρ)

)2
ε−1(2.35)

‖τhjj‖ ≤ Cε−3/2 and ‖τhjj‖L1 ≤ Cε−1(2.36)

(ii) for j 6= k, ∣∣〈uhj , τhk 〉∣∣ ≤ b(ρ)ε−1,(2.37)

‖τhkj‖ ≤ b(ρ)ε−3/2 and ‖τhkj‖L1 ≤ b(ρ)ε−1.(2.38)
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2.6. The spectrum of the linearized operator and transverse coercivity. A key point in
the analysis of the equations of motion (2.30),(2.33) is the spectral analysis of the linear operator
Lhε on υ = u− uh, the part of the solution transverse to the manifold M.

We consider the eigenvalue problem

(EVP)


Lhε (φ) := −δ(ε)

(
ε2φ′′ − f ′(uh)φ

)′′
+ µ(ε)

(
ε2φ′′ − f ′(uh)φ

)
= λ(ε)φ, 0 < x < 1,

φ′(0) = φ′(1) = 0,

φ′′′(0) = φ′′′(1) = 0,

and the associated quadratic form

Ãε[φ] := −〈Lhε (φ) , φ〉

=

∫ 1

0

[
δ(ε)

(
ε2φ2

xx + f ′(uh)φ2
x − 1

2

(
f
′
(uh)

)
xx
φ2
)

+ µ(ε)
(
ε2φ2

x + f ′(uh)φ2
)]

dx,(2.39)

where we have applied integration by parts. We note that the operator Lhε : D(Lhε ) → L2(0, 1),
with domain

D(Lhε ) :=
{
φ ∈ H4(0, 1) : φ′(0) = φ′(1) = 0 = φ′′′(0) = φ′′′(1)

}
,

is not symmetric in L2(0, 1). However (EVP) may be recast into a self-adjoint form, as the form

Ãε it will be seen in the sequel to be lower semibounded and it is also closable since it is associated
with the symmetric operator Shε : D(Shε )→ L2(0, 1), defined by

(2.40) Shε (φ) := −δ(ε)
(
ε2φ′′′′ −

(
f ′(uh)φ′

)′ − 1

2

(
f
′
(uh)

)
xx
φ
)

+ µ(ε)
(
ε2φ′′ − f ′(uh)φ

)
,

with domain D(Shε ) ≡ D(Lhε ), in the sense that

(2.41) 〈Lhε (φ) , φ〉 = −Ãε[φ] = 〈Shε (φ) , φ〉, for any φ ∈ D(Lhε ).

We can then consider the self-adjoint extension (Friedrichs extension) of Shε associated with the

closure of Ãε which we still denote by Shε . The spectrum of Shε turns out to consist of a sequence
of real eigenvalues

· · · ≤ λN+1 ≤ λN ≤ · · · ≤ λ1,

satisfying, when ε2µ(ε) ≥ O(δ(ε)),

λk ≤ Cµ(ε),

and in particular for k = N + 1, N + 2, · · ·

λk ≤ −C = −C(ε) < 0,

for some C = C(ε) which will be specified. To this aim, we will use the variational characterization
of the eigenvalues for Shε ,

(2.42) −λN+1 := max
V

dim V=N

min
φ∈V ⊥

Ãε[φ]

‖φ‖2
,

where the maximum is taken over the linear N -dimensional subspaces V of

(2.43)
{
φ ∈ H2(0, 1) : φ′(0) = φ′(1) = 0

}
.
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Let us decompose the Rayleigh quotient in (2.42) into the Cahn-Hilliard and the Allen-Cahn
part, i.e.

(2.44) R(φ) :=
〈−Shε (φ), φ〉
‖φ‖2

= δ(ε)R1(φ) + µ(ε)R2(φ),

for

R1(φ) :=

∫ 1

0
(ε2φ2

xx + f ′(uh)φ2
x − 1

2

(
f
′
(uh)

)
xx
φ2) dx

‖φ‖2
,

R2(φ) :=

〈Lh2,εφ,φ〉︷ ︸︸ ︷∫ 1

0
(ε2φ2

x + f ′(uh)φ2) dx

‖φ‖2
.

(2.45)

In the sequel we will assume that δ(ε) > 0 and µ(ε) > 0 satisfy the condition

(2.46) ε2µ(ε) ≥ C0δ(ε) ∀ε > 0,

for some C0 ≥ Cmin > 0, where Cmin depends on the supremum of |ε2(f ′(uh))xx| = O(1) in (0, 1)
and can be determined implicitly in the context of the proof of following theorem.

We shall show that when δ(ε), µ(ε) satisfy (2.46), then

−λN+1 ≥ C(ε) = O(µ(ε)− Cminδ(ε)ε
−2) > 0.

For our purpose, we state the result in the variational form. The main implication for us is the
transverse coercivity (cf. Lemma 2.6), the coercivity of Lhε on υ = u − uh which recall that is
approximately orthogonal to the tangent space (see (2.22)).

Theorem 2.4. Let δ(ε) > 0 and µ(ε) > 0 satisfying (2.46). Then there exist Λ, ρ2 > 0 such that
for h ∈ Ωρ with ρ ≤ ρ2 it holds that

min
φ∈V ⊥

−〈Shε (φ) , φ〉
‖φ‖2

≥ η(ε) > 0,

for V = span{τhi , i = 1, 2, . . . , N}, with τhi are the approximate tangent vectors defined in (2.24),
and

(2.47) η(ε) := Λ(µ(ε)− Cminδ(ε)ε
−2).

Proof. Remind that f(u) = u3 − u, and so f ′(u) = 3u2 − 1 ≥ −1.
Moreover, it holds that

|(f ′(uh))xx| ≤ Cε−2 in [0, 1],

since there

|uhx| ≤ Cε−1, |uhxx| ≤ Cε−2,

see in Appendix relations (4.34), and (4.35), while uh is bounded.
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Using that δ(ε) > 0, µ(ε) > 0, and the above, we get for any φ ∈ V ⊥

R(φ) :=
〈−Shε (φ), φ〉
‖φ‖2

=δ(ε)

∫ 1

0
(ε2φ2

xx + f ′(uh)φ2
x − 1

2

(
f
′
(uh)

)
xx
φ2)dx

‖φ‖2

+ µ(ε)

∫ 1
0 (ε2φ2

x + f ′(uh)φ2)dx

‖φ‖2

≥− δ(ε)

∫ 1

0
φ2
xdx

‖φ‖2
+ µ(ε)

∫ 1
0 (ε2φ2

x + f ′(uh)φ2)dx

‖φ‖2

− δ(ε)

∫ 1

0

1
2

(
f
′
(uh)

)
xx
φ2dx

‖φ‖2

≥− δ(ε)

∫ 1

0
φ2
xdx

‖φ‖2
+ µ(ε)Λ

∫ 1
0 (ε2φ2

x + φ2)dx

‖φ‖2

− δ(ε)

2
sup
(0,1)
|(f ′(uh))xx|

≥

∫ 1

0
[−δ(ε) + µ(ε)Λε2]φ2

xdx

‖φ‖2
+ µ(ε)Λ− sup

(0,1)
|ε2(f

′
(uh))xx|

δ(ε)

2
ε−2

=Λ
(
µ(ε)ε2 − 1

Λ
δ(ε)

)‖φx‖2
‖φ‖2

+ Λε−2
(
µ(ε)ε2 − C1

2Λ
δ(ε)

)

(2.48)

where we applied the Main Theorem 4.2 (i) of [11], at pg. 538, and defined

C1 := sup
(0,1)
|ε2(f

′
(uh))xx| = O(1).

More specifically, we used that for some Λ > 0 and ρ2 > 0∫ 1

0
(ε2φ2

x + f ′(uh)φ2)dx ≥ Λ

∫ 1

0
(ε2φ2

x + φ2)dx

for h ∈ Ωρ with ρ ≤ ρ2. Here, Λ satisfies

Λ ≤ Λ∗
Λ∗ + 2

,

(see [11], at pg. 541, and use the specific f), with Λ∗ arbitrary in (0, λ∗) for some λ∗ > 0 such that

λ∗ ≤ min f ′(±1) = 2,

see [11], at pg. 536, for the detailed definition.
Therefore, in (2.48), if we choose µ(ε), δ(ε) such that

ε2µ(ε) ≥ C0δ(ε),
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for

C0 ≥ Cmin := max
{ 1

Λ
,
C1

2Λ

}
+ β2,

for β = O(1) 6= 0 as small, we obtain

〈−Shε (φ), φ〉
‖φ‖2

≥ C(ε) = Λ(µ(ε)− Cminδ(ε)ε
−2) > 0,

for any φ ∈ V ⊥, and thus the result. �

The next theorem, gives an upper bound for the spectrum.

Theorem 2.5. Let δ(ε) > 0 and µ(ε) > 0 satisfying (2.46),

ε2µ(ε) ≥ C0δ(ε) ∀ε > 0,

for C0 ≥ Cmin > 0 as defined in Theorem 2.4. Then, for any k it holds that

λk ≤ Cµ(ε),

for some C > 0.

Proof. Using that δ(ε) > 0, µ(ε) > 0, and f(u) = u3 − u, f ′(u) = 3u2 − 1 ≥ −1, we get for any φ,
and since C0 ≥ 1

Λ > 1

R(φ) :=
〈−Shε (φ), φ〉
‖φ‖2

=δ(ε)

∫ 1

0
(ε2φ2

xx + f ′(uh)φ2
x − 1

2

(
f
′
(uh)

)
xx
φ2)dx

‖φ‖2

+ µ(ε)

∫ 1
0 (ε2φ2

x + f ′(uh)φ2)dx

‖φ‖2

≥δ(ε)

∫ 1

0
(−φ2

x − 1
2

(
f
′
(uh)

)
xx
φ2)dx

‖φ‖2

+ µ(ε)

∫ 1
0 (ε2φ2

x − φ2)dx

‖φ‖2

=

∫ 1

0
(−δ(ε) + µ(ε)ε2)φ2

xdx

‖φ‖2
−

∫ 1

0
[µ(ε) + δ(ε)1

2

(
f
′
(uh)

)
xx

]φ2dx

‖φ‖2

≥−

∫ 1

0
[µ(ε) + δ(ε)1

2

(
f
′
(uh)

)
xx

]φ2dx

‖φ‖2

≥− µ(ε)− C1δ(ε)
1
2ε
−2.

(2.49)

This yields that for all k = 1, · · · , N
λk ≤ µ(ε) + C1δ(ε)

1
2ε
−2 ≤ Cµ(ε).

�
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For υ ∈ C2([0, 1]) with υx = 0 at x = 0, 1, we define the forms

Ãε[υ] :=

∫ 1

0

[
δ(ε)

(
ε2υ2

xx + f ′(uh) υ2
x − 1

2

(
f
′
(uh)

)
xx
υ2
)

+ µ(ε)
(
ε2υ2

x + f ′(uh)υ2
)]
dx,

(2.50)

(see (2.40), (2.39)) and

B̃ε[υ] :=

∫ 1

0

[
δ(ε)ε2υ2

xx +
(
δ(ε) + µ(ε)ε2

)
υ2
x +

(
δ(ε) + µ(ε)

)
υ2
]
dx.(2.51)

Lemma 2.6. There is a ρ0 > 0 such that if 0 < ρ < ρ0 and h ∈ Ωρ, then for any υ ∈ C2 with

υx = 0 at x = 0, 1 and 〈υ, τhj 〉 = 0, j = 1, · · · , N,

(2.52) B̃ε[υ] ≤ CÃε[υ]

for some positive constant C, and

(2.53) η(ε)Ãε[υ] ≤ ‖Shε (υ)‖2.

Proof. By Theorem 4.2 in [11] there exists Λ > 0 such that

(2.54)

∫ 1

0
ε2υ2

x + f ′(uh)υ2 dx ≥ Λ

∫ 1

0
ε2υ2

x + υ2.

For such Λ, and c := max{c1, c2} for positive constants of the uniform bounds

|
(
f ′(uh)

)
xx
| ≤ c1ε

−2 and |f ′(uh)| ≤ c2 and [0, 1],

we have

Ãε[υ] :=

∫ 1

0
δ(ε)

(
ε2υ2

xx + f ′(uh) υ2
x − 1

2

(
f ′(uh)

)
xx
υ2
)

+ µ(ε)
(
ε2υ2

x + f ′(uh)υ2
)
dx

=

∫ 1

0
δ(ε)ε2υ2

xx dx + δ(ε)

∫ 1

0
f ′(uh) υ2

x − 1
2

(
f ′(uh)

)
xx
υ2 dx + µ(ε)

∫ 1

0
ε2υ2

x + f ′(uh)υ2 dx

≥
∫ 1

0
δ(ε)ε2υ2

xx dx − c δ(ε)

∫ 1

0
υ2
x + ε−2υ2 dx + µ(ε) Λ

∫ 1

0
ε2υ2

x + υ2 dx

=

∫ 1

0
δ(ε)ε2υ2

xx +
(
µ(ε) Λ ε2 − c δ(ε)

)
υ2
x +

(
µ(ε) Λ − c δ(ε)ε−2

)
υ2 dx

≥ C
∫ 1

0
δ(ε)ε2υ2

xx +
(
δ(ε) + µ(ε) ε2

)
υ2
x +

(
δ(ε) + µ(ε)

)
υ2 dx

=: C B̃ε[υ]

for some positive constant C small enough; the last inequality follows from the assumption (2.46),
since

µ(ε) Λ ε2 − c δ(ε) ≥ C
(
δ(ε) + µ(ε) ε2

)
⇐⇒ µ(ε) ε2 ≥ c+ C

Λ− C
δ(ε)

and

µ(ε) Λ − c δ(ε)ε−2 ≥ C
(
δ(ε) + µ(ε)

)
⇐⇒ µ(ε) ε2 ≥ c+ Cε2

Λ− C
δ(ε).
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Regarding inequality (2.53), we use the estimate

(2.55) 0 < C(ε) ≤ Ãε[υ]

‖υ‖2
∀υ with υx(0) = υx(1) = 0 and 〈υ, τhj 〉 = 0, j = 1, · · · , N,

for C(ε) = η(ε) := Λ(µ(ε)− Cminδ(ε)ε
−2), to get immediately

(2.56)
∣∣Ãε[υ]

∣∣ = |〈Shε (υ) , υ〉| ≤ ‖Shε (υ)‖ ‖υ‖
(2.55)

≤ 1√
C
· ‖Shε (υ)‖ ·

∣∣Ãε[υ]
∣∣1/2

and hence (2.53) follows. �

2.7. Flow near layered equilibria. The main result of this section is Theorem 2.8 regarding the
motion of the layers. For υ ∈ C1[0, 1] with υx(0) = υx(1) = 0, we introduce the norm

(2.57) Bε[υ] :=

∫ 1

0

[
ε2υ2

x + υ2
]
dx

and we will study the orbit u(x, t) = uh(t)(x) + υ(x, t), of (1.1) as long as

(2.58) Bε[υ] ≤ Cε = O(ε).

Lemma 2.7. For υ ∈ C1[0, 1] we have

(2.59) ‖υ‖2L∞ ≤
1 + ε

ε
Bε[υ].

Proof. Let x1 ∈ [0, 1] be such that

(2.60) υ2(x1) = ‖υ‖2L∞
and let x2 6= x1 be such that

(2.61) υ2(x2) ≤ Bε[υ].

We can assume that x2 ≤ x1 without loss of generality, for otherwise we would consider the reflection
of υ about 1

2 which would then satisfy this assumption with ‖ · ‖L∞ , Bε[·] remaining invariant.
Integrating the inequality

ε
d

dx
υ2 = 2ευυx ≤ ε2υ2

x + υ2

on [x2, x1], we obtain

(2.62) ευ2(x1)− ευ2(x2) ≤ Bε[υ]

hence (2.59) results upon the substitution of (2.60)-(2.61) into (2.62). �

For the coefficients ajk of ḣk in the LHS of (2.25), defined in (2.26), we introduce the matrices

S(h), Ŝ(h, υ),

(2.63) S(h) =
(
S(h)

)
jk

:=
〈
uhk , τ

h
j

〉
and Ŝ(h, υ) =

(
Ŝ(h, υ)

)
jk

:=
〈
υ , τhj,k

〉
.

According to Lemma 3.1 of [11], there exist σ1, ρ1 > 0 such that if σ < σ1 and ρ < ρ1 and

(h, υ) ∈ Sρ,σ, then the matrices S(h) and S(h)− Ŝ(h, υ) are invertible with

(2.64) ‖S−1‖ ≤ 4A−2
0 ε and ‖(S − Ŝ)−1‖ ≤ 8A−2

0 ε.

Here, ‖ · ‖ denotes the matrix norm induced by the vector norm ‖h‖ = maxj |hj | on RN , and A0 is
the constant appearing in (2.35).
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Theorem 2.8. There exists ρ2 > 0 and a constant C > 0, such that

|ḣi| ≤Cδ(ε)
(
ε−1α(r) + ε−5/2B1/2

ε [υ] + ε−3Bε[υ]
)

+ Cµ(ε)
(
εα(r) + ε1/2B1/2

ε [υ]
[
α(r) + β(r)

]
+ ε−1Bε[υ]

)
,

(2.65)

as long as h ∈ Ωρ, with ρ < ρ2, and the orbit u(x, t) = uh(t)(x)+υ(x, t) of (1.1) remains sufficiently
close to M so that Bε[υ] = O(ε).

Proof. The RHS of (2.30) with

τhj (x) = −γj(x)uhx(x), j = 1, 2, . . . , N,

is written as

− δ(ε)
〈
A1,ε(u

h) + Lh1,ε(υ) +
(
fh υ2

)
xx
, γjuhx

〉
+ µ(ε)

〈
A2,ε(u

h) + Lh2,ε(υ) + fh υ2 , γjuhx
〉
.

(2.66)

We will consider the first summand in (2.66) that comes from the CH part, and shall estimate
the terms

(2.67)
〈
A1,ε(u

h) , γjuhx
〉︸ ︷︷ ︸

T1

+
〈
Lh1,ε(υ) , γjuhx

〉︸ ︷︷ ︸
T2

+
〈(
fh υ2

)
xx
, γjuhx

〉
,︸ ︷︷ ︸

T3

for j = 1, 2, . . . , N, where fh is given in (2.29); here, recall the notation

A1,ε(u) =
(
ε2uxx − f(u)

)
xx
, and Lh1,ε(υ) =

(
ε2υxx − f ′(uh)υ

)
xx
.

Estimate of T1 :
For all j, we have

L b(φj) = 0,

which in view of the definition (2.10), implies that

A1,ε(u
h) = 0 for |x− hj | ≥ ε.

Using that

γj(x) = 1 for |x− hj | ≤ ε,
we get

(2.68) T1 :=
〈
A1,ε(u

h) , γjuhx
〉

=

∫ hj+ε

hj−ε

(
ε2uhxx − f(uh)︸ ︷︷ ︸

L b(uh)

)
xx
uhx dx.

In the above, we integrate by parts twice, and obtain

(2.69) T1 =

∫ hj+ε

hj−ε
L b(uh)uhxxx dx.

We apply (4.37) together with (4.43) in (2.69), and derive

(2.70) |T1| ≤ C ε−2 α(r).



20 D. C. ANTONOPOULOU, G. KARALI, AND K. TZIRAKIS

Estimate of T2 :
Using τhj := γjuhx we integrate by parts four times the first term and twice the second one, in the
definition of T2 , to get

T2 :=
〈
Lh1,ε(υ) , τhj

〉
= −ε2

〈
υxxxx , τ

h
j

〉
+
〈
(f ′(uh)υ)xx , τ

h
j

〉
= −ε2

〈
υ , (τhj )xxxx

〉
+
〈
υ , f ′(uh)(τhj )xx

〉
= −ε2

[〈
υ , γj(uhx)xxxx

〉
+ 4

〈
υ , γjx(uhx)xxx

〉
+ 6

〈
υ , γjxx(uhx)xx

〉
+ 4

〈
υ , γjxxx(uhx)x

〉
+
〈
υ , γjxxxxu

h
x

〉](2.71a)

+
〈
υ , γjf ′(uh)uhxxx

〉
+ 2

〈
υ , γjxf

′(uh)uhxx
〉

+
〈
υ , γjxxf

′(uh)uhx
〉
.(2.71b)

Here, we have used that τhj , (τ
h
j )x, (τ

h
j )xx vanish at x = 0, 1.

We now proceed to pointwise estimates for the terms involving uh in (2.71), within the interval
[mj ,mj+1] for a fixed yet arbitrary j = 1, . . . , N.

First notice that

(2.72) ε2(uhx)xx − f ′(uh)uhx =
d

dx
L b(uh),

and by (2.16),

(2.73)
d

dx
L b(uh) = 0 except in [hj − ε, hj + ε],

while, in view of (2.4),

(2.74) γjx = γjxx = γjxxx = 0 in [mj + 2ε, mj+1 − 2ε] ⊃ [hj − ε, hj + ε].

Therefore the last term in (2.71b) is canceled out by the last one in (2.71a), and (2.71) becomes

T2 = −ε2
[〈
υ , γj(uhx)xxxx

〉
+ 4

〈
υ , γjx(uhx)xxx

〉
+ 5

〈
υ , γjxx(uhx)xx

〉
+ 4

〈
υ , γjxxx(uhx)x

〉
+
〈
υ , γjxxxxu

h
x

〉](2.71a′)

+
〈
υ , γjf ′(uh)uhxxx

〉
+ 2

〈
υ , γjxf

′(uh)uhxx
〉
.(2.71b′)

We have

(2.75)
∣∣∣dnγj
dxn

∣∣∣ ≤ Cε−n.
Moreover, differentiating (2.15) twice, and then using (2.75), (2.74), (4.29), we get for |x−mj | < 2ε,

(2.76) ε2|γjx(uhx)xxx| = ε2 |γjx| |f ′′(uh)(uhx)2 + f ′(uh)uhxx| ≤ Cε−1β(r).

By (2.75), (2.10), (2.15) and for x ∈ [mj ,mj + 2ε] ∪ [mj+1 − 2ε,mj+1], we derive

(2.77) ε2|γjxx(uhx)xx| = ε2 |γjxx| |f ′(uh)uhx| ≤ Cε−1β(r).

Using (2.75), (2.74) and the estimate (4.29) presented in the Appendix, we get

(2.78) ε2|γjxxx(uhx)x| = |γjxxx| |f(uh)| ≤ Cε−3β(r),
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and

(2.79) |γjx f ′(uh)uhxx| ≤ Cε−3β2(r).

By (2.75), (2.13), (2.74) and the estimate (4.27) (see Appendix), we obtain

(2.80) ε2|γjxxxxuhx| ≤ Cε−3β(r).

We will see that the dominant asymptotics of T2 comes from the term

(2.81)
〈
υ , γj

(
− ε2(uhx)xxxx + f ′(uh)uhxxx

)〉
,

which is the leading term of T2. This term as we will see has order O(ε−5/2‖υ‖).
We may proceed as previously, to get pointwise estimates on [mj ,mj + 2ε] ∪ [mj+1 − 2ε,mj+1]

wherein the contribution is in minor order in the asymptotics of T2, while, as we shall see, the main
order comes from the term

T2,1 := −ε2(uhx)xxxx + f ′(uh)uhxxx in [mj + 2ε, mj+1 − 2ε].(2.82)

Differentiating the third derivative of uh, given by (4.36), twice, we obtain

∂5uh

∂x5
=



φjxxxxx, for mj ≤ x ≤ hj − ε,

χjxxxxx
(
φj+1 − φj

)
+ 5χjxxxx

(
φj+1
x − φjx

)
+ 10χjxxx

(
φj+1
xx − φjxx

)
+10χjxx

(
φj+1
xxx − φjxxx

)
+ 10χjx

(
φj+1
xxxx − φjxxxx

)
+(1− χj)φjxxxxx + χjφj+1

xxxxx, for |x− hj | < ε,

φj+1
xxxxx, for hj + ε ≤ x ≤ mj+1.

(2.83)

We use first (2.83), (4.30), (4.31), (4.32), (4.33), (4.36), and get

(2.84) T2,1 = O
(
ε−3α(r)

)
− ε2

[
(1− χj)φjxxxxx + χjφj+1

xxxxx

]
+ f ′(uh)

[
(1− χj)φjxxx + χjφj+1

xxx

]
,

and then, after differentiating (2.15) three times, we obtain

T2,1 = O
(
ε−3α(r)

)
− (1− χj) f ′(φj)φjxxx − χj f ′(φj+1)φj+1

xxx + f ′(uh)
[
(1− χj)φjxxx + χjφj+1

xxx

]
(2.85a)

− (1− χj)
(
f ′(φj)

)
xx
φjx − χj

(
f ′(φj+1)

)
xx
φj+1
x

− 2(1− χj)
(
f ′(φj)

)
x
φjxx − 2χj

(
f ′(φj+1)

)
x
φj+1
xx

(2.15)
== O

(
ε−3α(r)

)
− (2.85a) − (1− χj)

[
f

(3)
(φj)(φjx)3 + ε−2f ′′(φj)f(φj)φjx

]
− χj

[
f

(3)
(φj+1)(φj+1

x )3 + ε−2f ′′(φj+1)f(φj+1)φj+1
x

]
− 2ε−2

[
(1− χj)f ′′(φj)f(φj)φjx + χjf ′′(φj+1)f(φj+1)φj+1

x

]
.
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So, this yields

T2,1 = O
(
ε−3α(r)

)
− (2.85a) −

[
(1− χj)f (3)

(φj)(φjx)3 + χjf
(3)

(φj+1)(φj+1
x )3

]
− 3ε−2

[
(1− χj)f ′′(φj)f(φj)φjx + χjf ′′(φj+1)f(φj+1)φj+1

x

]
= O

(
ε−3α(r)

)
− (2.85a)− f (3)

(φj)(φjx)3 − 3ε−2f ′′(φj)f(φj)φjx

+ χj
[
f

(3)
(φj)(φjx)3 − f

(3)
(φj+1)(φj+1

x )3
]

(2.86a)

+ 3 ε−2 χj
[
f ′′(φj)f(φj)φjx − f ′′(φj+1)f(φj+1)φj+1

x

]
.(2.86b)

To estimate the term (2.85a), we use (4.38)-(4.39) with χ := χj and

(2.87) F (s) := f ′
(
θ1(s)

)
θ2(s), s ∈ [0, 1],

where

(2.88) θ1(s) := (1− s)φj + sφj+1, θ2(s) := (1− s)φjxxx + sφj+1
xxx, s ∈ [0, 1],

so (2.85a) equals to R(χj), (cf. (4.38)-(4.39) for the detailed definition of the remainder R), and
hence, it is given by

(2.85a) = (1− χj)
[
(φj+1 − φj)2

∫ χj

0
s θ2(s)f (3)(θ1(s)) ds

+ 2 (φj+1
xxx − φjxxx) (φj+1 − φj)

∫ χj

0
s f ′′(θ1(s)) ds

]
+ χj

[
(φj+1 − φj)2

∫ 1

χj
(1− s) θ2(s)f (3)(θ1(s)) ds

+ 2 (φj+1
xxx − φjxxx) (φj+1 − φj)

∫ 1

χj
(1− s) f ′′(θ1(s)) ds.

]
(2.89)

The above, in view of (4.30a), (4.32) is bounded as follows

(2.90)
∣∣(2.85a)

∣∣ ≤ Cε−3α(r), for |x− hj | < ε.

We also exploit (4.23), (4.30), to obtain

(2.86a) =
∣∣f (3)

(φj)(φjx)3 ± f
(3)

(φj)(φj+1
x )3 − f

(3)
(φj+1)(φj+1

x )3
∣∣

≤
∣∣f (3)

(φj)
∣∣∣∣(φjx)3 − (φj+1

x )3
∣∣ +

∣∣φj+1
x

∣∣3∣∣f (3)
(φj+1) − f

(3)
(φj)

∣∣
≤ Cε−2

∣∣φjx − φj+1
x

∣∣ + Cε−3
∣∣f (3)

(φj+1) − f
(3)

(φj)
∣∣

≤ Cε−2
∣∣φjx − φj+1

x

∣∣ + Cε−3
∣∣φj+1 − φj

∣∣
≤ Cε−3α(r), for |x− hj | < ε.(2.91)

A similar argument yields

(2.92) (2.86b) ≤ Cε−3α(r), for |x− hj | < ε.

Combining (4.26), (2.59), (2.71a′), (2.76)-(2.80), (2.86), (2.90), (2.91), and (2.92), we get the
final estimate for T2, given by

(2.93) |T2| ≤ C ε−5/2 B1/2
ε [υ].
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Estimate of T3 :
Integrating by parts twice, we obtain

(2.94) T3 =
〈
fhυ2 ,

(
γjuhx

)
xx

〉
,

where fh is defined in (2.29).
By (2.58), (2.59) and the fact that

uh = O(1),

we get

(2.95) uh + τυ = O(1),

and thus, the integrand |f ′′(uh + τυ)| in the definition of fh is uniformly bounded; so, using again
(2.59), we derive

(2.96) |fh|υ2 ≤ Cε−1Bε[υ].

Then (2.94), by employing (2.13), (2.14), (2.15), (4.36), (4.26), (2.74), (4.28), (4.29), yields

(2.97) |T3| ≤ C ε−4 Bε[υ].

Gathering (2.70), (2.93), and (2.97), we arrive at the final estimate

(2.98) |T1 + T2 + T3| ≤ C
(
ε−2α(r) + ε−5/2B1/2

ε [υ] + ε−4Bε[υ]
)
.

Let us proceed now with the second summand in (2.66) that comes from the AC part.
In particular, we have to estimate the terms

(2.99)
〈
A2,ε(u

h) , γjuhx
〉︸ ︷︷ ︸

I1

+
〈
Lh2,ε(υ) , γjuhx

〉︸ ︷︷ ︸
I2

+
〈
fh υ2 , γjuhx

〉︸ ︷︷ ︸
I3

for j = 1, 2, . . . , N, where fh is given in (2.29); here, recall the notation

A2,ε(u) = ε2uxx − f(u) = L b(u) and Lh2,ε(υ) = ε2υxx − f ′(uh)υ.

Estimate of I1 :

For all j, we have

L b(φj) = 0,

which by the definition (2.10), implies that

A2,ε(u
h) = 0 for |x− hj | ≥ ε.

Using the fact that

γj(x) = 1 for |x− hj | ≤ ε,
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we get

(2.100) I1 :=
〈
A2,ε(u

h) , γjuhx
〉

=

∫ hj+ε

hj−ε

[
ε2uhxx − f(uh)

]︸ ︷︷ ︸
L b(uh)

uhx dx.

We apply (4.34), (4.43) into (2.100), and obtain

(2.101) |I1| ≤ C α(r).

See also the analytical calculation at Remark 2.3.

Estimate of I2 :
With τhj := γjuhx we integrate by parts twice the first term, to get

I2 :=
〈
Lh2,ε(υ) , τhj

〉
= ε2

〈
υxx , τ

h
j

〉
−
〈
f ′(uh)υ , τhj

〉
= ε2

〈
υ , (τhj )xx

〉
−
〈
f ′(uh)υ , τhj

〉
= ε2

〈
υ , γjxxu

h
x

〉
+ 2ε2

〈
υ , γjx(uhx)x

〉
+
〈
υ , γj

[
ε2
(
uhx)xx − f ′(uh)uhx

]〉
.(2.102)

In the above, we used that τhj , (τ
h
j )x vanish at x = 0, 1.

By (2.13), (2.14), (4.27b), (4.29), (2.74), (2.75) we have

(2.103)
∣∣ε2γjxxu

h
x

∣∣ ≤ Cε−1β(r) and
∣∣ε2γjx(uhx)x

∣∣ ≤ Cε−1β(r).

Considering third term in (2.102), by (2.72) and (2.73) we have

(2.104) ε2(uhx)xx − f ′(uh)uhx = 0 except in [hj − ε, hj + ε].

By (2.13), (4.36) we have, for |x− hj | < ε

I2,1 := γj
[
ε2
(
uhx)xx − f ′(uh)uhx

]
= ε2

[
χjxxx

(
φj+1 − φj

)
+ 3χjxx

(
φj+1
x − φjx

)
+ 3χjx

(
φj+1
xx − φjxx

)
+ (1− χj)φjxxx + χjφj+1

xxx

]
− f ′

((
1− χj

)
φj + χj φj+1

)[
χjx
(
φj+1 − φj

)
+
(
1− χj

)
φjx + χj φj+1

x

]
.

Using (2.15), it follows that

(2.105) I2,1 = ε2
[
χjxxx

(
φj+1 − φj

)
+ 3χjxx

(
φj+1
x − φjx

)
+ 3χjx

(
φj+1
xx − φjxx

)]
+ f ′

(
uh
)
χjx
(
φj+1 − φj

)
+ I2,2,

where

(2.106) I2,2 = (1−χj)f ′(φj)φjx+χjf ′(φj+1)φj+1
x − f ′

(
(1−χj)φj+χj φj+1

)[(
1−χj

)
φjx+χj φj+1

x

]
.

To estimate the term I2,2, we employ (4.38)-(4.39), for χ := χj , and

(2.107) F (s) := f ′
(
θ1(s)

)
θ3(s), s ∈ [0, 1],

where

(2.108) θ1(s) := (1− s)φj + sφj+1, θ3(s) := (1− s)φjx + sφj+1
x , s ∈ [0, 1],
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to obtain

I2,2 =(1− χj)
[
(φj+1 − φj)2

∫ χj

0
s θ2(s)f (3)(θ1(s)) ds

+ 2 (φj+1
x − φjx) (φj+1 − φj)

∫ χj

0
s f ′′(θ1(s)) ds

]
+ χj

[
(φj+1 − φj)2

∫ 1

χj
(1− s) θ2(s)f (3)(θ1(s)) ds

+ 2 (φj+1
x − φjx) (φj+1 − φj)

∫ 1

χj
(1− s) f ′′(θ1(s)) ds

]
.

(2.109)

Combining (4.30), (4.31), (4.33), (2.59), (2.102)-(2.105), (2.109), and taking into account that
each of the integrals in (2.102) is taken over an interval of length O(ε), we conclude that

(2.110) |I2| ≤ C ε−1/2 B1/2
ε [υ]

[
α(r) + β(r)

]
.

Estimate of I3 :

In view of (2.13), (4.26), (2.96), we obtain

(2.111) |I3| ≤ C ε−2 Bε[υ].

Gathering together (2.101), (2.110), (2.111), we get

(2.112) |I1 + I2 + I3| ≤ C
(
α(r) + ε−1/2B1/2

ε [υ]
[
α(r) + β(r)

]
+ ε−2Bε[υ]

)
.

Combining (2.30), (2.64), (2.98), and (2.112), the final estimate (2.65) follows. �

Remark 2.9. In view of the estimate of Main Theorem 2.8 for the dynamics, considering the main
order of the Allen-Cahn part (which follows from (2.112)) in comparison with this of Carr-Pego
[11], let us emphasize the difference in our approach. We estimated separately the contributions of

(S − Ŝ)−1 and the right side of the equations of motion, while the analysis in [11] is carried out

only after having applied the inverse (S − Ŝ)−1 of the coefficient matrix on the right side of the
system; see in particular the first equations of (3.1) and (3.4) therein. Nevertheless, our result is
analogous even if only the Allen-Cahn part is considered.

The estimate (2.65) shows that the main order in the dynamics will be given by the contribution
of Bε[υ] at the terms where the exponentially small quantities α(r), β(r) do not act.

Using the spectrum of the linearized Cahn-Hilliard / Allen-Cahn operator, and a quite wide class
of weights δ(ε) > 0, µ(ε) ≥ 0, we shall show that for initial data close enough to the manifold M
(through a form Ãε[υ]) the layer dynamics will be stable, and will remain exponentially small in ε if

the initial data are exponentially small. (The form Ãε[υ] will involve uh and up to second derivatives

of υ, and as we shall prove, satisfies Ãε[υ] ≥ cBε[υ].) This stability profile is in agreement to
Sections 1.2-1.3 and (1.2)-(1.3) of [11].
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2.8. The slow channel. We define the slow channel for (1.1) to be

(2.113) Γρ :=
{
u(x) : u = uh + υ, Ãε[υ] ≤ c γ(ε)α2(r)

}
with

(2.114) γ(ε) :=
(
δ2(ε)ε−3 + µ2(ε)ε + ε−4

)
/η(ε).

We will study the orbit u(x, t) = uh(t)(x) + υ(x, t) of (IACH) as long as

(2.115)
(δ2(ε) ε−7

ν(ε)2 +
µ2(ε) ε−3

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

)
B̃ε[υ]� η(ε)

(conditions (2.119) and (2.115) arise in (2.135)-(2.136) further below); for instance, for the condition
(2.115) it suffices to have

B̃ε[υ]� ε7η(ε).

For later use, notice that clearly B̃ε ≥ (δ(ε) + µ(ε))Bε and the estimate (2.59) directly yields

(2.116) ‖υ‖2L∞ ≤
1

δ(ε) + µ(ε)

1 + ε

ε
B̃ε[υ].

The following Lemma will be also useful.

Lemma 2.10. For υ ∈ C2[0, 1] with υx(0) = υx(1) = 0 we have

(2.117) ‖υx‖L∞ ≤ δ(ε)−1/2 ε−1 B̃1/2
ε [υ].

Proof. We have

(2.118) |υx(x)| =
∣∣∣∣∫ x

0
υxx dy

∣∣∣∣ ≤ ‖υxx‖ ≤ δ(ε)−1/2 ε−1 B̃1/2
ε [υ].

�

Next, besides the condition (2.46) we assume that the coefficients δ(ε), µ(ε) satisfy the condition

(2.119) δ2(ε) ε−6 ≤ cη(ε)ν(ε)

for some c > 0 small enough, with ν(ε) := δ(ε) + µ(ε) and the η(ε) given in (2.47).
The result about the attractiveness and the slow evolution of states within the channel (2.113)

is stated in the following theorem.

Theorem 2.11. Let u(x, t) = uh(t)(x) + υ(x, t) be an orbit of (1.1) starting outside but near the

slow channel (2.113) in the sense that υ(·, 0) satisfies condition (2.115). Then B̃ε[υ] will decrease
exponentially until u enters the channel and will remain in the channel following the approximate
manifold M with speed O(e−c/r), thus staying in the channel for an exponentially long time. It can
leave Γρ only through the ends of the channel i.e at a time that (hj−hj−1) is reduced to ε

ρ for some
j.

Proof. Applying (2.52) combined with the estimate Bε ≤ ν(ε)−1B̃ε into (2.65) we immediately get

(2.120) |ḣi| ≤ Cδ(ε)
(
ε−5/2ν(ε)−1/2Ã1/2

ε [υ] + ε−3ν(ε)−1Ãε[υ]
)

+ C
(
δ(ε) + µ(ε)ε2

)
ε−1α(r)

+ Cµ(ε)
((
α(r) + β(r)

)
ε1/2ν(ε)−1/2Ã1/2

ε [υ] + ε−1ν(ε)−1Ãε[υ]
)
.
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We have to estimate the growth of Ãε[υ(·, t)], so that to prove the attractiveness of the slow channel,
and then combined with (2.120), we will get an upper bound of the layers’ speed within the channel;
see (2.139). To this end, we set

Iε[υ] :=
1

2

d

dt
Ãε[υ]

=
1

2

d

dt

〈
− Lhε (υ), υ

〉
=

〈
− 1

2

∂

∂t
Lhε (υ), υ

〉
− 1

2

〈
Lhε (υ), υt

〉
(2.121)

where, we recall by (2.28),

Lhε (υ) := −δ(ε)
(
ε2υxx − f ′(uh)υ

)
xx︸ ︷︷ ︸

Lh1,ε(υ)=the linearized CH part

+ µ(ε)
(
ε2υxx − f ′(uh)υ

)︸ ︷︷ ︸
Lh2,ε(υ)=the linearized AC part

.(2.28)

In order to write Iε[υ] in a more convenient form, we first notice the pointwise estimate

∂

∂t
Lhε (υ) =

∂

∂t

[
−δ(ε)

(
ε2υxx − f ′(uh)υ

)
xx

+ µ(ε)
(
ε2υxx − f ′(uh)υ

)]
= Lhε (υt) + δ(ε)

((
f ′(uh)

)
t
υ
)
xx
− µ(ε)

(
f ′(uh)

)
t
υ(2.122)

and note also that integration by parts yields

(2.123)
〈
Lhε (υt), υ

〉
=
〈
υt, L

h
ε (υ)

〉
− δ(ε)

〈
υt,

(
f ′(uh)υ

)
xx

〉
+ δ(ε)

〈
υt, f

′(uh)υxx
〉

where the boundary terms vanish due to the zero Neumann conditions on υx, υxxx and (2.20).
Therefore, by (2.121), (2.122), (2.123) we get

Iε[υ] = −
〈
Lhε (υ), υt

〉
+

δ(ε)

2

〈(
f ′(uh)υ

)
xx
, υt

〉
− δ(ε)

2

〈
f ′(uh)υxx, υt

〉
− δ(ε)

2

〈((
f ′(uh)

)
t
υ
)
xx
, υ
〉

+
µ(ε)

2

〈(
f ′(uh)

)
t
υ, υ

〉
= Tε[υ] − δ(ε)

2

〈((
f ′(uh)

)
t
υ
)
xx
, υ
〉

+
µ(ε)

2

〈(
f ′(uh)

)
t
υ, υ

〉
(2.124)

for

(2.125) Tε[υ] := −
〈
Shε (υ), υt

〉
with Shε the symmetric operator (corresponding to Lhε ) given in (2.40).

Regarding the last term in (2.124), we use Lemma 2.7, and notice that the support of each uhj is

contained in an interval of length 2ε where |uhj | ≤ cε−1, therefore

(2.126) ‖uhj ‖L1 = O(1),
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so we obtain

µ(ε)
〈(
f ′(uh)

)
t
υ, υ

〉
≤ µ(ε) ‖υ‖2

L∞
‖f ′′(uh)‖

L∞

N∑
j=1

‖uhj ‖L1 |ḣj |

≤ C ε−1 µ(ε)Bε[υ]

N∑
j=1

|ḣj |

≤ C ε−1
(
µ2(ε)B2

ε [υ] + max
j
|ḣj |2

)
≤ C ε−1

(µ2(ε)

ν(ε)2 B̃
2
ε [υ] + max

j
|ḣj |2

)
.(2.127)

As for the middle term in (2.124), after integrating by parts and using again Lemma 2.7, it can be
similarly seen that〈((

f ′(uh)
)
t
υ
)
xx
, υ
〉

= −
〈(
f ′(uh)

)
t
υx, υx

〉
−
〈(
f ′′(uh)uhx

)
t
υ, υx

〉
≤ ‖υx‖2 ‖f ′′(uh)‖

L∞

N∑
j=1

‖uhj ‖L∞ |ḣj |

+ ‖υ‖
L∞ ‖υx‖L1 ‖f ′′′(uh)‖

L∞ ‖u
h
x‖L∞

N∑
j=1

‖uhj ‖L∞ |ḣj |

+ ‖υ‖
L∞ ‖υx‖L1 ‖f ′′(uh)‖

L∞

N∑
j=1

‖∂hj (u
h
x)‖

L∞ |ḣj |

≤ C
(
ε−3 + ε−7/2

)
Bε[υ]

N∑
j=1

|ḣj |

≤ C ε−7/2 Bε[υ]
N∑
j=1

|ḣj |.

In the last inequality we applied (4.15), (4.26), (4.30), (4.31) into (3.45) to get

‖∂hj (u
h
x)‖

L∞ = O(ε−2),

and additionally (4.13)-(4.14) into (4.53) to get

‖uhj ‖L∞ = O(ε−1).

We also used (2.59) and as well the estimate

‖υx‖L1 < ε−1B1/2
ε [υ].
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Therefore,

δ(ε)
〈((

f ′(uh)
)
t
υ
)
xx
, υ
〉
≤ C δ(ε) ε−3− 1

2 Bε[υ]
N∑
j=1

|ḣj |

≤ C
(
δ2(ε) ε−6 B2

ε [υ] + ε−1 max
j
|ḣj |2

)
≤ C

(δ2(ε) ε−6

ν(ε)2 B̃2
ε [υ] + ε−1 max

j
|ḣj |2

)
.(2.128)

We next want to estimate the first term in (2.124). In view of the equation of motion (2.33)

υt = Aε(u
h) + Lhε (υ) − δ(ε)

(
fh υ2

)
xx

+ µ(ε)fh υ2 −
N∑
j=1

uhj ḣj

with (see (2.29))

fh(x) :=

∫ 1

0
(τ − 1) f ′′(uh + τυ) dτ

we may write Tε[υ] as follows,

Tε[υ] = −
〈
Shε (υ), υt

〉
= −

〈
Shε (υ) , Lhε (υ)

〉
−
〈
Shε (υ) , Aε(u

h)
〉

+ δ(ε)
〈
Shε (υ) ,

(
fh υ2

)
xx

〉
−µ(ε)

〈
Shε (υ) , fh υ2

〉
+

N∑
j=1

〈
Shε (υ) , uhj

〉
ḣj

= −
〈
Shε (υ) , Shε (υ)

〉
− T2,ε[υ] + δ(ε)T3,ε[υ] − µ(ε)T4,ε[υ] + T5,ε[υ]

−δ(ε)
[〈
Shε (υ) ,

(
f ′(uh)

)
x
υx

〉
+

1

2

〈
Shε (υ) ,

(
f ′(uh)

)
xx
υ
〉]

where in in the last equality, we substituted the following relation into the first term of the left
side,

Lhε (υ) = Shε (υ) + δ(ε)
[(
f ′(uh)

)
x
υx +

1

2

(
f ′(uh)

)
xx
υ
]
.

So, we obtain

(2.129) Tε[υ] = −‖Shε (υ)‖2 − T2,ε[υ] + δ(ε)T3,ε[υ] − µ(ε)T4,ε[υ] + T5,ε[υ]

− δ(ε)
[〈
Shε (υ) ,

(
f ′(uh)

)
x
υx

〉
+

1

2

〈
Shε (υ) ,

(
f ′(uh)

)
xx
υ
〉]

for

T2,ε[υ] :=
〈
Shε (υ) , Aε(u

h)
〉
,

T3,ε[υ] :=
〈
Shε (υ) ,

(
fh υ2

)
xx

〉
,

T4,ε[υ] :=
〈
Shε (υ) , fh υ2

〉
,
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T5,ε[υ] :=
N∑
j=1

〈
Shε (υ) , uhj

〉
ḣj .

We have∣∣T2,ε[υ]
∣∣ =

∣∣∣〈Shε (υ) , Aε(u
h)
〉∣∣∣ ≤ ‖Shε (υ)‖ ‖Aε(uh)‖ ≤ 1

4
‖Shε (υ)‖2 + ‖Aε(uh)‖2

≤ 1

4
‖Shε (υ)‖2 + Cε−4α2(r),(2.129a)

where we combined (2.16), (4.35), (4.43) to estimate the term ‖Aε(uh)‖. Also we have(
fh υ2

)
xx

= υ2

∫ 1

0
(τ − 1) f (4)(uh + τυ)(uhx + τυx)2 dτ + υ2

∫ 1

0
(τ − 1) f ′′(uh + τυ)(uhxx + τυxx) dτ

+ 4 υ υx

∫ 1

0
(τ − 1) f (3)(uh + τυ)(uhx + τυx) dτ + 2(υxxυ + υ2

x)

∫ 1

0
(τ − 1) f ′′(uh + τυ) dτ

therefore

δ(ε)
∣∣T3,ε[υ]

∣∣ = δ(ε)
∣∣∣〈Shε (υ) ,

(
fh υ2

)
xx

〉∣∣∣
≤ δ(ε) ‖Shε (υ)‖ ‖

(
fh υ2

)
xx
‖

≤ ε‖Shε (υ)‖2 +
δ2(ε)

4ε
‖
(
fh υ2

)
xx
‖2

≤ ε‖Shε (υ)‖2 +
C δ2(ε)

ε

[
‖υ‖4L∞

( 1

ε4
+ ‖υx‖4 + ‖υxx‖2

)
+ ‖υ‖2L∞ ‖υx‖2L∞

( 1

ε2
+ ‖υx‖2

)
+ ‖υ‖2L∞ ‖υxx‖2 + ‖υx‖2L∞ ‖υx‖2

]
≤ ε‖Shε (υ)‖2 +

C δ2(ε)

ε

(
‖υ‖4L∞

1

ε4
+ ‖υ‖2L∞ ‖υxx‖2 + ‖υ‖2L∞ ‖υx‖2L∞

1

ε2
+ ‖υx‖2L∞ ‖υx‖2

)
for some ε small enough which is to be determined later on. In the last inequality we used that
‖υ‖2L∞ = O(1) as follows by (2.58), (2.59).

Then, applying into the above inequality, the estimates (2.116), (2.117) and the following two
estimates that follow directly from the definition (2.51),

‖υxx‖2 ≤ δ(ε)−1 ε−2 B̃ε[υ](2.130)

‖υx‖2 ≤ (δ(ε) + µ(ε)ε2)−1 B̃ε[υ],(2.131)

we get

(2.129b) δ(ε)
∣∣T3,ε[υ]

∣∣ ≤ ε‖Shε (υ)‖2 +
C

ε

[δ2(ε) ε−6

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

]
B̃2
ε [υ].

Also we clearly have

µ(ε)
∣∣T4,ε[υ]

∣∣ = µ(ε)
∣∣∣〈Shε (υ) , fh υ2

〉∣∣∣ ≤ µ(ε)‖Shε (υ)‖ ‖fh υ2‖

≤ ε‖Shε (υ)‖2 +
µ2(ε)

4ε
‖fh υ2‖2
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≤ ε‖Shε (υ)‖2 +
C µ2(ε)

ε
‖υ‖2L∞ ‖υ‖2

≤ ε‖Shε (υ)‖2 +
C

ε

µ2(ε)

ν(ε)2 ε
−1 B̃2

ε [υ].(2.129c)

In the last inequality we applied the estimate (2.116) for the term ‖υ‖L∞ and the estimate

(2.132) ‖υ‖2 ≤ ν(ε)−1B̃ε[υ]

which follows immediately from the definition (2.51).
Using (2.126), we get

∣∣T5,ε[υ]
∣∣ =

∣∣∣∣∣∣
N∑
j=1

〈
Shε (υ) , uhj

〉
ḣj

∣∣∣∣∣∣ ≤ ‖Shε (υ)‖
N∑
j=1

‖uhj ‖ · |ḣj | ≤ C ‖Shε (υ)‖ε−1/2
( N∑
j=1

|ḣj |
)

≤ ε ‖Shε (υ)‖2 +
C

ε
ε−1

( N∑
j=1

|ḣj |
)2

≤ ε ‖Shε (υ)‖2 +
C

ε
ε−1 max

j
|ḣj |2.(2.129d)

As for the last two terms in (2.129), we use (4.34),(4.35) and then (2.131) and (2.132) respectively,
to get:

δ(ε)
〈
Shε (υ) ,

(
f ′(uh)

)
x
υx

〉
≤ ε ‖Shε (υ)‖2 +

C δ2(ε)

ε
ε−2 ‖υx‖2

≤ ε ‖Shε (υ)‖2 +
C

ε

δ2(ε) ε−2

δ(ε) + µ(ε)ε2
B̃ε[υ](2.129e)

δ(ε)
〈
Shε (υ) ,

(
f ′(uh)

)
xx
υ
〉
≤ ε ‖Shε (υ)‖2 +

C δ2(ε)

ε
ε−4 ‖υ‖2

≤ ε ‖Shε (υ)‖2 +
C

ε

δ2(ε) ε−4

ν(ε)
B̃ε[υ].(2.129f)

We then apply (2.129a)-(2.129f) into (2.129) and next apply the resulted estimate together with
(2.127), (2.128) into (2.124) and use the assumption (2.46) to conclude that

(2.133)
1

2

d

dt
Ãε[υ] +

(
1− 1

4
− 5ε

)
‖Shε (υ)‖2 ≤ C

[
ε−1 max

j
|ḣj |2 + ε−4α2(r)

]
+ C

[δ2(ε)

ν(ε)
ε−4 +

(µ2(ε) ε−1

ν(ε)2 +
δ2(ε) ε−6

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

)
B̃ε[υ]

]
B̃ε[υ].

We apply the estimate (2.65) for the term maxj |ḣj |2 of the RHS of (2.133), and then substitute

the estimate Bε[υ] ≤ ν(ε)−1B̃ε[υ] and fix any ε < 3
20 to get

(2.134)
1

2

d

dt
Ãε[υ] + C ‖Shε (υ)‖2 ≤ C

(
δ2(ε)ε−3 + µ2(ε)ε + ε−4

)
α2(r)
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+ C
[δ2(ε) ε−6

ν(ε)
+
(δ2(ε) ε−7

ν(ε)2 +
µ2(ε) ε−3

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

)
B̃ε[υ]

]
B̃ε[υ].

Applying the estimates (2.52)-(2.53) into (2.134) we obtain

(2.135)
1

2

d

dt
Ãε[υ] + C η(ε) Ãε[υ] ≤ C

(
δ2(ε)ε−3 + µ2(ε)ε + ε−4

)
α2(r)

+ C
[δ2(ε) ε−6

ν(ε)
+
(δ2(ε) ε−7

ν(ε)2 +
µ2(ε) ε−3

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

)
B̃ε[υ]

]
Ãε[υ]

and in view of the assumptions (2.46),(2.119) on δ(ε), µ(ε), as well as the condition (2.115) for

B̃ε[υ(·, t)], we have

(2.136)
δ2(ε) ε−6

ν(ε)
+
(δ2(ε) ε−7

ν(ε)2 +
µ2(ε) ε−3

ν(ε)2 +
δ(ε) ε−5

ν(ε)
+

δ(ε) ε−2

δ(ε) + µ(ε)ε2

)
B̃ε[υ] = o

(
η(ε)

)
so (2.135) yields

(2.137)
d

dt
Ãε[υ] + c η(ε) Ãε[υ] ≤ C

(
δ2(ε)ε−3 + µ2(ε)ε + ε−4

)
α2(r).

Integrating (2.137) we get

Ãε[υ(t)] ≤ Ãε[υ(0)] e−cηt + C γ(ε)α2(r)
(
1− e−cηt

)
(2.138)

≤ max
{
Ãε[υ(0)] , C γ(ε)α2(r)

}
with the γ(ε) given in (2.114). In view of (2.138) and the definition (2.113) of the slow channel Γρ
we deduce that the solution u evolves exponentially towards Γρ.

Applying (2.138) into (2.120) we get

(2.139) |ḣi| ≤ C(δ(ε) + µ(ε)ε2)ε−1α(r) + C
(
ε−2δ(ε) + µ(ε)

)
ε−1ν(ε)−1 (Ãε[υ(0)] + γ(ε)α2(r)

)
+ C

[
δ(ε)ε−3 +

(
α(r) + β(r)

)
ε1/2µ(ε)

]
ν(ε)−1/2 (Ã1/2

ε [υ(0)] + γ1/2(ε)α(r)
)

and since in the slow channel (2.113) we have Aε[υ̃(0)] ≤ c γ(ε)α2(r), (2.139) becomes

(2.140) |ḣi| ≤ C(δ(ε) + µ(ε)ε2)ε−1α(r) + C
(
δ(ε) + µ(ε)ε2

)
ε−3ν(ε)−1 γ(ε)α2(r)

+ C
[
δ(ε)ε−3 +

(
α(r) + β(r)

)
ε1/2µ(ε)

]
ν(ε)−1/2 γ1/2(ε)α(r)

which implies that

|ḣi| ≤ C max
{ (
δ(ε) +µ(ε)ε2

)
ε−1 ,

(
δ(ε) +µ(ε)ε2

)
ε−3ν(ε)−1 γ(ε)α(r) , δ(ε) ν(ε)−1/2 ε−3 γ1/2(ε)

}
α(r)

where α(r) is exponentially small (see the definition (4.19), (4.21) and the estimate (4.2)), so
provided that(
δ(ε) +µ(ε)ε2

)
ε−1 � α−1 ,

(
δ(ε) +µ(ε)ε2

)
ε−3ν(ε)−1 γ(ε)� α−2, δ(ε) ν(ε)−1/2 ε−3 γ1/2(ε)� α−1,

by (2.140) we have

|ḣi| = O(e−c/r)

and the solution ũ stay in the channel for an exponentially long time. �
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Remark 2.12. Let for example

δ(ε) = O(1) small enough,

and

µ(ε) = ε−3,

then

n(ε) = O(ε−3),

or for example

δ(ε) = O(ε3) small enough,

and

µ(ε) = O(1),

then

n(ε) = O(1).

In both cases, the conditions (2.46) and (2.119) are satisfied.

3. Mass conserving layer dynamics

We fix a mass M ∈ (−1, 1), and consider the mixed problem

(ACH) ut = −δ(ε)
(
ε2uxx − f(u)

)
xx

+ µ(ε)
(
ε2uxx − f(u)

)
,

for 0 < x < 1, t > 0, subject to the boundary conditions

ux(0, t) = ux(1, t) = 0,(BC1)

uxxx(0, t) = 0,(BC2)

together with the constraint of mass conservation

(MC)

∫ 1

0
u(x, t) dx =

∫ 1

0
u(x, 0) dx =: M, t > 0,

in place of the Neumann b.c. for uxx at x = 1; here, we replaced the fourth b.c. uxxx(1, t) = 0,
used in the previous Section, by (MC).

As we shall see, (MC), when the integrated version is stated, yields the integrated Cahn-Hilliard/
Allen-Cahn equation with the same b.c. as these of the integrated Cahn-Hilliard proposed and
analyzed by Bates and Xun in [6].

We remind that f(u) := u3 − u.
Following [6, 11], we define the first approximate manifold by

(3.1) M = {uh : h ∈ Ωρ},

with uh given in (2.10).
Let

M(h) :=

∫ 1

0
uh(x) dx,

for h ∈ Ωρ, then, by Lemma 2.1 of [6], M(h) is a smooth function of h, and

(3.2)
∂M

∂hj
= 2(−1)j+1 +O(ε−1β(r)).
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We define the second approximate manifold M1, as the constant mass sub-manifold of M,

(3.3) M1 =
{
uh ∈M :

∫ 1

0
uh(x) dx = M

}
,

which will be the proper approximate manifold for the mass-conserving problem (ACH); see also
in [6].

It is clear that M1 is smooth, while by (3.2) and the Implicit Function Theorem, we see
that hN is a smooth function of h1, · · · , hN−1 if uh ∈ M1. Thus, M1 can be parameterized by
(h1, h2, · · · , hN−1).

We set

(3.4) ξ := (ξ1, ξ2, · · · , ξN−1) ≡ (h1, h2, · · · , hN−1),

and for uh ∈M1, we will denote uh by uξ, and define

(3.5) uξj :=
∂uξ

∂ξj
= uhj +

∂uh

∂hN

∂hN
∂hj

, j = 1, 2, · · · , N − 1,

where uhj still stands as a notation for ∂uh/∂hj .

3.1. The coordinate system. Motivated by [2] and [6], instead of working with the original
problem (1.1)-(BC1)-(BC2)-(MC) we will work with the integrated problem.

More precisely, we integrate (1.1), use the conditions at x = 0 given in (BC1)-(BC2) and set

(3.6) ũ(x, t) :=

∫ x

0
u(y, t) dy,

to get the integrated CH/AC equation,

(IACH) ũt = −δ(ε)
(
ε2ũxxx −W ′(ũx)

)
x

+ µ(ε)
(
ε2ũxx −

∫ x

0
W ′
(
ũx(y, t)

)
dy
)
,

with the boundary conditions, following directly from (3.6), (MC), (BC1) respectively,

ũ(0, t) = 0,(IBC0)

ũ(1, t) = M,(IMC)

ũxx(0, t) = ũxx(1, t) = 0.(IBC1)

We may apply standard arguments for establishing the well-posedness of this problem, resulting
from the one of the original problem (ACH); we outline the basic points in §4.3 of Appendix.

Here, and for the rest of this section, we have adopted the notation W ′(u) := f(u) and W (u) ≡
F (u) introduced in [6], since for the case δ(ε) := 1, µ(ε) := 0, the equation (IACH) with the above
b.c. coincides exactly with the problem analyzed therein (see pg. 431).

Equivalently, (IACH) is written as

ũt = −δ(ε)
(
ε2ũxx −W(ũx)

)
xx

+ µ(ε)
(
ε2ũxx −W(ũx)

)
,

for 0 < x < 1, t > 0, where W is obviously given by

(3.7) W(u)(x, t) :=

∫ x

0
W ′
(
u(y, t)

)
dy,

that is (W(u))x = W ′(u) with W(u)(0, t) = 0.
Let us also denote by Aε the spatial differential operator at the right side of (IACH), that is

(3.8) Aε(ũ) := δ(ε)A1,ε(ũ) + µ(ε)A2,ε(ũ),



LAYER DYNAMICS FOR THE CAHN-HILLIARD / ALLEN-CAHN EQUATION 35

where A1,ε(ũ),A2,ε(ũ) stand for the integrated CH operator and the integrated AC operator re-
spectively,

(3.9) A1,ε(ũ) := −
(
ε2ũxx −W(ũx)

)
xx

= −
(
A2,ε(ũ)

)
xx

and A2,ε(ũ) := ε2ũxx −W(ũx).

To study the dynamics of (IACH) in a neighborhood of M, we introduce a coordinate system
relative to M,

ũ 7→ (ξ, υ̃),

as in [6], in the sense that for a solution ũ close to M there exist unique components ũξ, υ̃ such
that

(3.10) ũ(x, t) = ũξ(t)(x) + υ̃(x, t).

More specifically, the approximate solution ũξ is in M, and

(3.11) υ̃ = υ̃xx = 0 at x = 0, 1,

with

(3.12) 〈υ̃, Ej〉 :=

∫ 1

0
υ̃ Ej dx = 0, j = 1, . . . , N − 1,

where Ej are approximate tangent vectors to M , defined as in [6], by

(3.13) Ej(x) = w̄j(x)−Qj(x), j = 1, 2, · · · , N − 1,

with

(3.14) w̄j(x) := ũhj (x) + ũhj+1(x),

and

(3.15) Qj(x) := (−1
6x

3 + 1
2x

2 − 1
3x)w̄jxx(0) + 1

6(x3 − x)w̄jxxx(1) + xw̄j(1),

so that

(3.16) Ej = (Ej)xx = 0 at x = 0, 1.

3.2. Equations of motion. We proceed next to obtain the odes system describing the motion of
(ξ, υ̃). To this end, we consider the linearized Aε at ũh,

(3.17) Lhε (υ̃) := δ(ε)Lh1,ε(υ̃) + µ(ε)Lh2,ε(υ̃),

with the linearized CH part and the linearized AC part

(3.18) Lh1,ε(υ̃) := −
(
ε2υ̃xx − LhW (υ̃x)

)
xx

= −
(
Lh2,ε(υ̃)

)
xx

and Lh2,ε(υ̃) := ε2υ̃xx − LhW (υ̃x),

and LhW let the linearized W at uh,

(3.19) LhW (υ̃x)(x, t) :=

∫ x

0
W ′′
(
uh(t)(y)

)
υ̃x(y, t) dy

that is (LhW (υ̃x))x = W ′′(uh)υ̃x, with LhW (υ̃x)(0, t) = 0.
We differentiate (3.12), with respect to t, to get

(3.20)
〈
∂tυ̃ , Ej

〉
+
〈
υ̃ , ∂tEj

〉
= 0, j = 1, . . . , N − 1,

with

∂tυ̃ = ∂t(ũ− ũξ)
(IACH)
=== Aε(ũ)− ∂tũξ = Aε(ũ)−

∑
k

ũξk ξ̇k,
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and ∂tEj =
∑

k Ej,k ξ̇k, hence (3.20) becomes

(3.21)

N−1∑
k=1

ajk ξ̇k =
〈
Aε(ũ

ξ + υ̃) , Ej
〉
, j = 1, 2, . . . , N − 1,

where

(3.22) ajk :=
〈
uξk , Ej

〉
−
〈
υ̃ , Ej,k

〉
, j, k = 1, 2, . . . , N − 1,

and the subscripts k indicate the differentiation with respect to ξk,

uξk :=
∂uξ

∂ξk
and Ej,k :=

∂Ej
∂ξk

.

We write (3.21) in more useful form by expanding the term

Aε(ũ
ξ + υ̃) = Aε(ũ

ξ) + Lhε (υ̃) + δ(ε)
(
f ξ υ̃2

x

)
x

+ µ(ε)

∫ x

0
f ξ υ̃2

x dy,(3.23)

where Lhε (υ̃) is given in (3.17), and

(3.24) f ξ(x) :=

∫ 1

0
(1− τ) W ′′′(ũξx + τ υ̃x) dτ,

to get

N−1∑
k=1

ajk ξ̇k =
〈
Aε(ũ

ξ) , Ej
〉

+
〈
Lhε (υ̃) , Ej

〉
+ δ(ε)

〈(
f ξ υ̃2

x

)
x
, Ej

〉
+ µ(ε)

〈 ∫ x

0
f ξ υ̃2

x dy , Ej
〉
.

Discriminating between the (integrated) CH and AC parts (see (3.8), (3.17)), we have

N−1∑
k=1

ajk ξ̇k = δ(ε)
〈
A1,ε(ũ

ξ) + Lh1,ε(υ̃) +
(
f ξ υ̃2

x

)
x
, Ej

〉
+ µ(ε)

〈
A2,ε(ũ

ξ) + Lh2,ε(υ̃) +

∫ x

0
f ξ υ̃2

x dy , Ej
〉
.

(3.25)

Moreover, we apply (3.10) to (IACH), to get

(3.26) υ̃t = Aε(ũ
ξ + υ̃)−

N−1∑
j=1

ũξj ξ̇j .

As above, we expand in (3.26) the term Aε(ũ
ξ + υ̃), according to (3.23), to get

υ̃t = Aε(ũ
ξ) + Lhε (υ̃) + δ(ε)

(
f ξ υ̃2

x

)
x

+ µ(ε)

∫ x

0
f ξ υ̃2

x dy −
N−1∑
j=1

ũξj ξ̇j ,

while separating the (integrated) CH and AC induced parts, we arrive at
(3.27)

υ̃t = δ(ε)

[
A1,ε(ũ

ξ) + Lh1,ε(υ̃) +
(
f ξ υ̃2

x

)
x

]
+ µ(ε)

[
A2,ε(ũ

ξ) + Lh2,ε(υ̃) +

∫ x

0
f ξ υ̃2

x dy

]
−

N−1∑
j=1

ũξj ξ̇j .

Equations (3.25), (3.27) will be mainly used in the sequel, and for the rest of the section.
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3.3. Flow near layered equilibria. For υ̃ ∈ C2[0, 1] with υ̃(0) = υ̃(1) = 0, we introduce the
form

(3.28) Bε[υ̃] :=

∫ 1

0

[
ε2υ̃2

xx + υ̃2
x

]
dx.

We will study the orbit ũ(x, t) = ũξ(t)(x) + υ̃(x, t) of (IACH) as long as (cf. [6, (80)′] at pg. 448,
for an analogous argument)

(3.29) µ2(ε) δ−2(ε) ε−3 + µ2(ε) δ−1(ε) ε−5 +
(
δ(ε) ε−7 + ε−6 + µ2(ε) δ−2(ε) ε−2

)
Bε[υ̃] = o(1),

(condition (3.29) arises in (3.75)-(3.76) further below), or sufficiently for

(3.30) µ2(ε) δ−2(ε)
(
1 + δ(ε) ε−5

)
= o(ε3),

and as long as

(3.31)
(
δ(ε) + ε

)
Bε[υ̃] = o(ε7).

By Lemma 4.1 in [6], if υ̃ ∈ C2[0, 1] with υ̃(0) = υ̃(1) = 0, then the following estimates hold true

‖υ̃‖2L∞ ≤ Bε[υ̃],(3.32)

‖υ̃x‖2L∞ ≤ 1 + ε

ε
Bε[υ̃].(3.33)

We prove now the next Main Theorem estimating the dynamics of the layers, in the current mass
conservative case.

Theorem 3.1. There exist ρ2 > 0, and constant C > 0, such that, as long as h ∈ Ωρ with ρ < ρ2

and the orbit ũ(x, t) = ũh(t)(x) + υ̃(x, t) of (IACH) remains close to M so that (3.29) holds, the
next bound is valid

|ξ̇i| ≤Cδ(ε)
(
ε−2 α(r) + ε−5 β(r)B1/2

ε [υ̃] + ε−2Bε[υ̃]
)

+ Cµ(ε)
(
α(r) + ε−1B1/2

ε [υ̃] + ε−2Bε[υ̃]
)
.

(3.34)

Proof. The first summand in the RHS of (3.25) is estimated in Bates-Xun [6, (78)-(80)]. In partic-
ular, it holds that

(3.35)
〈
A1,ε(ũ

ξ) + Lh1,ε(υ̃) +
(
f ξ υ̃2

x

)
x
, Ej

〉
≤ C

(
ε−1 α(r) + ε−4 β(r)B1/2

ε [υ̃] + ε−1Bε[υ̃]
)
.

Let us estimate the AC originated part

(3.36)
〈
A2,ε(ũ

ξ) , Ej
〉︸ ︷︷ ︸

T1

+
〈
Lh2,ε(υ̃) , Ej

〉︸ ︷︷ ︸
T2

+
〈 ∫ x

0
f ξ υ̃2

x dy , Ej
〉

︸ ︷︷ ︸
T3

.

We begin with the term T1. First notice that Ej = O(1) (cf. [6, (55)]), and therefore

(3.37)
∣∣〈A2,ε(ũ

ξ) , Ej
〉∣∣ ≤ C ∫ 1

0
A2,ε(ũ

ξ) dy,

where we recall that

A2,ε(ũ
ξ) := ε2ũξxx −W(ũξx) = ε2uξx −W(uξ)

=

∫ x

0
L b(uh) dy,(3.38)
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and that W is defined as

W(uh)(x) :=

∫ x

0
W ′
(
uh(y)

)
dy,

while L b denotes the bistable operator given in (2.17).
Combining (2.16), (4.43), (3.37), (3.38), we get

(3.39) |T1| ≤ C εα(r).

Considering the term T2 we have, (for L2,ε(υ̃), see (3.17))

T2 :=
〈
L2,ε(υ̃) , Ej

〉
=

〈
ε2υ̃xx − LhW (υ̃x) , Ej

〉
= ε2

〈
υ̃ , (Ej)xx

〉
−
〈
LhW (υ̃x) , Ej

〉
(3.40a)

= ε2
〈
υ̃ ,

∂

∂hj
ũhxx
〉

+ ε2
〈
υ̃ ,

∂

∂hj+1
ũhxx
〉
− ε2

〈
υ̃ , (Qj)xx

〉
−
〈
LhW (υ̃x) , Ej

〉
(3.40b)

= ε2
〈
υ̃ ,

∂

∂hj
uhx
〉

︸ ︷︷ ︸
T2,1

+ ε2
〈
υ̃ ,

∂

∂hj+1
uhx
〉

︸ ︷︷ ︸
T2,2

− ε2
〈
υ̃ , (Qj)xx

〉︸ ︷︷ ︸
T2,3

−
〈
LhW (υ̃x) , Ej

〉︸ ︷︷ ︸
T2,4

.(3.40c)

In (3.40a) we used the Dirichlet boundary conditions for Ej , υ̃ given in (3.11) and (3.16) respectively.

In (3.40b) we took into account that uh is a smooth function, so, we interchanged ∂hj with ∂xx
after applying the definition of Ej by (3.13)-(3.15), and then, in (3.40c) we substituted

(3.41) ũhx = uh.

Let us proceed with the term T2,1. In order to apply ∂hj into uhx given in (2.13), we notice first
that

χj = χ
(x− hj

ε

)
, mj =

hj−1 + hj
2

.

Moreover, considering

φj(x) := φ
(
x−mj , hj − hj−1, (−1)j

)
= φ

(
x− hj−1+hj

2 , hj − hj−1, (−1)j
)
, for x ∈ [hj−1, hj ],

we use (4.10) to get

∂

∂hj
φj = φjx

∂

∂hj

(
hj−1+hj

2

)
+ φj`

∂

∂hj

(
hj − hj−1

)
= − 1

2
φjx −

1

2
sgn(x−mj)φ

j
x + wj

= −φjx + wj in Ij := [mj , mj+1],

and similarly

(3.42)
∂

∂hj
φj+1 = −φj+1

x − wj+1 in Ij ,
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with

wj(x, hj−1, hj) := w
(
x−mj , hj − hj−1, (−1)j

)
.

Therefore, we obtain

(3.43)
∂

∂hj

(
φj+1 − φj

)
= φjx − φj+1

x − wj − wj+1,

and

∂

∂hj

(
φj+1
x − φjx

)
==

∂

∂x

∂

∂hj

(
φj+1 − φj

)
(3.44a)

(3.43)
==

∂

∂x

(
φjx − φj+1

x − wj − wj+1
)

(3.44b)

== φjxx − φj+1
xx − wj

x − wj+1
x .(3.44c)

We now apply apply ∂hj to uhx given in (2.13), then we use (3.42)-(3.44c), and noticing that

χjx = −χjhj ,

we get
(3.45)

∂

∂hj
uhx =



−φjxx + wj
x, for mj ≤ x ≤ hj − ε,

−χjxx
(
φj+1 − φj

)
+ χjx

(
φjx − φj+1

x − wj − wj+1
)
− χjx

(
φj+1
x − φjx

)
+χj

(
φjxx − φj+1

xx − wj
x − wj+1

x

)
− φjxx + wj

x, for |x− hj | < ε,

−φj+1
xx − wj+1

x , for hj + ε ≤ x ≤ mj+1.

By (4.15), (4.24), (4.30), (4.31), (3.45), we derive

(3.46) |T2,1| < ε2‖υ̃‖L1 ‖∂hju
h
x‖L∞ ≤ C B1/2

ε [υ̃].

We may see that a similar estimate holds true for the term |T2,2|.
The term |T2,3| turns out to be dominated by the other terms (cf. [6, (54)]), and

(3.47) |T2,4| = |
〈
LhW (υ̃x) , Ej

〉
| ≤ ‖LhW (υ̃x)‖L1 ‖Ej‖L∞ ≤ C‖υ̃x‖L1 ≤ C B1/2

ε [υ̃].

Moreover, we have

(3.48) |T3| ≤ Cε−1Bε[υ̃].

Combining (3.25), (3.35), (3.39), (3.46), (3.47), and (3.48), and taking into account the fact that
the matrix ε(aij)

−1 is uniformly bounded as ε→ 0, as shown in [6, p. 448], we derive (3.34). �

3.4. The slow channel. For υ̃ ∈ C2([0, 1]) with υ̃ = υ̃xx = 0 at x = 0, 1, we define the form

Aε[υ̃] := −
〈
Lh1,ε(υ̃) , υ̃

〉
(3.49a)

=

∫ 1

0

[
ε2υ̃2

xx +W ′′(uh)υ̃2
x

]
dx(3.49b)
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where we performed integration by parts and recall that Lh1,ε stands for the linearized Cahn-Hilliard

operator A1,ε at uh (see (3.9), (3.18)), and is given by

Lh1,ε(υ̃) = −ε2υ̃xxxx +
(
W ′′(uh) υ̃x

)
x
,

associated with the BVP for the integrated Cahn-Hilliard equation

(ICH)


ũt = −ε2ũxxxx +

(
W ′(ũx)

)
x
, 0 < x < 1,

ũ(0, t) = 0, ũ(1, t) = M,

ũxx(0, t) = ũxx(1, t) = 0.

The definition of Aε is motivated by Lemma 4.2 of [6]. There, this Lemma, combined with the
estimates on the growth of |ξi| in terms of Bε (see [6, (84)]), together with the estimates on the
growth of Aε (see [6, (96)-(98)]) obtained by the equations of motion, led to the characterization
of the “slow channel”:

(3.50) Γ :=
{
ũ(x) : ũ = ũξ + υ̃, Aε[υ̃] ≤ cε−5α2(r)

}
,

for the solutions of the integrated Cahn-Hilliard near N -layered equillibria. This, stands as a special
case of our problem, for δ := 1, µ(ε) := 0.

In particular, according to [6, Lemma 4.2], there is a ρ0 > 0 such that if 0 < ρ < ρ0 and h ∈ Ωρ,
then for any υ̃ ∈ C2 with υ̃ = 0 at x = 0, 1 and 〈υ̃, Ej〉 = 0, j = 1, · · · , N − 1, there exists a
constant C independent of ε and υ̃ such that

(3.51) ε2Bε[υ̃] ≤ CAε[υ̃].

Let us point out that the forms Aε[υ̃], Bε[υ̃] as defined here in §3 are the forms associated with
the 4th order Cahn-Hilliard operator and they are defined by Bates-Xun [6, (76)].

Considering our problem, we define the slow channel for (IACH) by (cf. (3.50))

(3.52) Γρ :=
{
ũ(x) : ũ = ũξ + υ̃, Aε[υ̃] ≤ c γ(ε)α2(r)

}
,

with

(3.53) γ(ε) := µ2(ε)δ−1(ε)ε−1 + δ(ε)ε−5 + ε−2 + µ2(ε) δ−2(ε) ε.

It is clear that γ(ε)� 1, and in view of (3.30),

(3.54) γ(ε) = O
(
δ(ε)ε−5 + ε−2

)
.

The next Main Theorem establishes attractiveness, and the slow evolution of states within the
channel (3.52); cf. [6, Theorem B] for an analogous result in the Cahn-Hilliard case.

Theorem 3.2. Let ũ(x, t) = ũξ(t)(x) + υ̃(x, t) be an orbit of (IACH) starting outside but near
the slow channel Γρ in the sense that υ̃(·, 0) satisfies condition (3.29). Then Bε[υ̃] will decrease
exponentially until ũ enters the channel and will remain in the channel following the approximate
manifold M with speed O(e−c/r), thus staying in the channel for an exponentially long time. It can
leave Γρ only through the ends of the channel i.e at a time that (hj−hj−1) is reduced to ε

ρ for some
j.

Proof. Applying (3.51) into (3.34) we immediately get
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|ξ̇i| ≤Cδ(ε)
(
ε−2α(r) + ε−6β(r)A1/2

ε [υ̃] + ε−4Aε[υ̃]
)

+ Cµ(ε)
(
α(r) + ε−2A1/2

ε [υ̃] + ε−4Aε[υ̃]
)
.

(3.55)

In view of (3.55), our aim is to establish estimates on the growth of Aε[υ̃(·, t)].
Let us set

Iε[υ̃] :=
1

2

d

dt
Aε[υ̃]

=
1

2

d

dt

〈
− Lh1,ε(υ̃), υ̃

〉
=

〈
− 1

2

∂

∂t
Lh1,ε(υ̃), υ̃

〉
− 1

2

〈
Lh1,ε(υ̃), υ̃t

〉
.(3.56)

In order to write Iε[υ̃] in a more convenient form, we first observe that

(3.57)
∂

∂t
Lh1,ε(υ̃) = Lh1,ε(υ̃t) +

((
W ′′
(
uξ
))
t
υ̃x

)
x
.

Moreover, using integrations by parts (i.e. symmetry of the integrated linearized CH operator Lh1,ε),
we obtain

(3.58)
〈
Lh1,ε(υ̃t), υ̃

〉
=
〈
υ̃t, L

h
1,ε(υ̃)

〉
,

where the boundary terms vanish due to the zero boundary values of υ̃, υ̃xx.
Therefore, by (3.56), (3.57), (3.58) we get

(3.59)
1

2

d

dt
Aε[υ̃] = −

〈
Lh1,ε(υ̃), υ̃t

〉
− 1

2

〈((
W ′′
(
uξ
))
t
υ̃x

)
x
, υ̃
〉
.

Regarding the second term in (3.59), we integrate by parts and use Lemma 2.7, to derive as in [6,
(93)] ∣∣∣〈((W ′′(uξ))t υ̃x)x, υ̃〉∣∣∣ =

∣∣∣〈(W ′′(uξ))t υ̃x, υ̃x〉∣∣∣
≤ ‖υ̃x‖2L∞ ‖W ′′′(uξ)‖L∞

N−1∑
j=1

‖uξj‖L1 |ξ̇j |

≤ C ε−1Bε[υ̃]

N−1∑
j=1

|ξ̇j |

≤ C ε−1
(
B2
ε [υ̃] + max

j
|ξ̇j |2

)
(3.60)

where we used Propositions 4.4, 4.5, 4.6, for the boundedness of the L1-norm of uξj .

We next have to estimate the first term in (3.59).
Recall the equation of motion (3.27)

υ̃t = δ(ε)

[
A1,ε(ũ

ξ) + Lh1,ε(υ̃) +
(
f ξ υ̃2

x

)
x

]
+ µ(ε)

[
A2,ε(ũ

ξ) + Lh2,ε(υ̃) +

∫ x

0
f ξ υ̃2

x dy

]
−

N−1∑
j=1

ũξj ξ̇j ,
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with

f ξ(x) :=

∫ 1

0
(1− τ) W ′′′(ũξx + τ υ̃x) dτ,

given in (3.24).
We may write the first term in (3.59) as follows,

−
〈
Lh1,ε(υ̃) , υ̃t

〉
= −δ(ε)‖Lh1,ε(υ̃)‖2 −

=:I0,ε[υ̃], can be estimated in terms of Bε[υ̃], ‖Lh
1,ε(υ̃)‖ by [6, (88)-(90)]︷ ︸︸ ︷〈

Lh1,ε(υ̃) , δ(ε)
[
A1,ε(ũ

ξ) +
(
f ξ υ̃2

x

)
x

]
−

N−1∑
j=1

ũξj ξ̇j

〉
−µ(ε)

〈
Lh1,ε(υ̃) , A2,ε(ũ

ξ)
〉

︸ ︷︷ ︸
I1,ε[υ̃]

−µ(ε)
〈
Lh1,ε(υ̃) , Lh2,ε(υ̃)

〉
︸ ︷︷ ︸

I2,ε[υ̃]

−µ(ε)
〈
Lh1,ε(υ̃) ,

∫ x

0
f ξ υ̃2

x dy
〉

︸ ︷︷ ︸
I3,ε[υ̃]

= −δ(ε) ‖Lh1,ε(υ̃)‖2 − I0,ε[υ̃] − µ(ε) I1,ε[υ̃] − µ(ε) I2,ε[υ̃] − µ(ε) I3,ε[υ̃].(3.61)

Arguing as in [6, (88)-(90)] and applying [6, (101)], the term I0,ε[υ̃] is estimated by

(3.62)
∣∣∣I0,ε[υ̃]

∣∣∣ ≤ δ(ε)

4
‖Lh1,ε(υ̃)‖2 + C

(
ε−1 max

j
|ξ̇j |2 + δ(ε)

(
ε−2α2(r) + ε−4B2

ε [υ̃]
))
.

Let us estimate the terms I1,ε[υ̃], I2,ε[υ̃], I3,ε[υ̃] which are the ones coming from the AC part.
Regarding the term I1,ε[υ̃] in (3.61), we have the estimate

I1,ε[υ̃] =
〈
Lh1,ε(υ̃) , A2,ε(ũ

ξ)
〉

≤ ‖Lh1,ε(υ̃)‖ ‖A2,ε(ũ
ξ)‖

≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + 3 δ−1(ε)µ(ε) ‖A2,ε(ũ

ξ)‖2

≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + C δ−1(ε)µ(ε) ε α2(r).(3.63)

In the last inequality we used (2.16), (4.43), and (3.38).
As for the term I2,ε[υ̃] in (3.61), we first easily get

I2,ε[υ̃] =
〈
Lh1,ε(υ̃) , Lh2,ε(υ̃)

〉
≤ ‖Lh1,ε(υ̃)‖ ‖Lh2,ε(υ̃)‖

≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + 3 δ−1(ε)µ(ε) ‖Lh2,ε(υ̃)‖2,(3.64)

and then, as uh = O(1), we have |W ′′(uh)| = O(1).
By the definitions (3.18), (3.19) of the linearized AC operator Lh2,ε together with (3.33), we get

[Lh2,ε(υ̃)]2 :=
[
ε2υ̃xx −

∫ x

0
W ′′
(
uh(t)(y)

)
υ̃x(y, t) dy

]2

≤ 2ε4υ̃2
xx + C‖υ̃x‖2L∞
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≤ 2ε4υ̃2
xx + C ε−1Bε[υ̃]≤C ε−1Bε[υ̃].(3.65)

So, (3.64) yields

(3.66) I2,ε[υ̃] ≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + C δ−1(ε)µ(ε) ε−1Bε[υ̃].

For the term I3,ε[υ̃] in (3.61), we have

I3,ε[υ̃] =
〈
Lh1,ε(υ̃) ,

∫ x

0
f ξ υ̃2

x dy
〉

≤ ‖Lh1,ε(υ̃)‖
∣∣∣∣ ∫ x

0
f ξ υ̃2

x dy
∣∣∣∣

≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + 3 δ−1(ε)µ(ε)

∣∣∣∣ ∫ x

0
f ξ υ̃2

x dy
∣∣∣∣2,(3.67)

where we recall (3.24)

f ξ(x) :=

∫ 1

0
(1− τ) W ′′′(ũξx + τ υ̃x) dτ.

By (3.29), (3.33) and the fact that uh = O(1), we have (cf. (2.95))

ũξx + τ υ̃x = uh + τυ = O(1),

and thus the integrand |W ′′′(ũξx + τ υ̃x)| in the definition (3.24) of f ξ is uniformly bounded.
So,

(3.68)
∣∣∣∣ ∫ x

0
f ξ υ̃2

x dy
∣∣∣∣ ≤ C Bε[υ̃],

and therefore, (3.67) yields

(3.69) I3,ε[υ̃] ≤ δ(ε)

12µ(ε)
‖Lh1,ε(υ̃)‖2 + C δ−1(ε)µ(ε)B2

ε [υ̃].

Gathering (3.59)-(3.63), (3.66), (3.69), we get

(3.70)
d

dt
Aε[υ̃] +

δ(ε)

2
‖Lh1,ε(υ̃)‖2 ≤ C

[
ε−1 max

j
|ξ̇j |2 +

(
δ(ε) ε−2 + µ2(ε) δ−1(ε) ε

)
α2(r)

+
((
ε−1 + δ(ε) ε−4 + µ2(ε) δ−1(ε)

)
Bε[υ̃] + µ2(ε) δ−1(ε) ε−1

)
Bε[υ̃]

]
.

In the above, we apply the estimate (3.34) for maxj |ξ̇j | into the first term in the RHS of (3.70)
to get

d

dt
Aε[υ̃] +

δ(ε)

2
‖Lh1,ε(υ̃)‖2 ≤ C

[(
µ2(ε)ε−1 + δ2(ε)ε−5 + δ(ε) ε−2 + µ2(ε) δ−1(ε) ε

)
α2(r)

+
(
δ2(ε) ε−11 β2(r) + µ2(ε) δ−1(ε) ε−1 + µ2(ε) ε−3

+
(
δ2(ε) ε−5 + µ(ε)2ε−5 + ε−1 + δ(ε) ε−4 + µ2(ε) δ−1(ε)

)
Bε[υ̃]

)
Bε[υ̃]

]
.

(3.71)



44 D. C. ANTONOPOULOU, G. KARALI, AND K. TZIRAKIS

Let us now note that by [6, Lemma 3.2] we have the spectral estimate

(3.72) 0 < Λ ≤ λN ≤
Aε[υ̃]

‖υ̃‖2
,

where Λ is a constant independent of ε and ξ, and λN denotes the N th eigenvalue of Lh1,ε,

(EVP)


Lh1,ε(φ) := −ε2φ′′′′ +

(
W ′′(uξ)φ′

)′
= λ(ε, ξ)φ, 0 < x < 1,

φ(0) = φ(1) = 0,

φ′′(0) = φ′′(1) = 0.

From (3.72) we obtain∣∣Aε[υ̃]
∣∣ := |−

〈
Lh1,ε(υ̃) , υ̃

〉
| ≤ ‖Lh1,ε(υ̃)‖ ‖υ̃‖

(3.72)

≤ 1√
Λ
· ‖Lh1,ε(υ̃)‖ ·

∣∣Aε[υ̃]
∣∣1/2,

therefore

(3.73) Aε[υ̃] ≤ 1

Λ
‖Lh1,ε(υ̃)‖2.

Combining (3.51) with (3.73), we get

(3.74) Bε[υ̃] ≤ 1

Λ
ε−2 ‖Lh1,ε(υ̃)‖2.

Applying (3.74) into (3.71) we obtain

(3.75)
d

dt
Aε[υ̃] +

δ(ε)

2
‖Lh1,ε(υ̃)‖2 ≤ C

[(
µ2(ε)ε−1 + δ2(ε)ε−5 + δ(ε) ε−2 + µ2(ε) δ−1(ε) ε

)
α2(r)

+
(
δ2(ε) ε−13 β2(r) + µ2(ε) δ−1(ε) ε−3 + µ2(ε) ε−5

+
(
δ2(ε) ε−7 + µ(ε)2ε−7 + ε−3 + δ(ε) ε−6 + µ2(ε) δ−1(ε) ε−2

)
Bε[υ̃]

)
‖Lh1,ε(υ̃)‖2

]
and taking into account (4.3), (3.29) and (3.73), we arrive at (cf. [6, (96)] for an analogous
argument)

(3.76)
d

dt
Aε[υ̃(t)] +

Λ δ(ε)

3
Aε[υ̃(t)] ≤ C

(
µ2(ε)ε−1 + δ2(ε)ε−5 + δ(ε) ε−2 + µ2(ε) δ−1(ε) ε

)
α2(r)

with the light abuse of notation Aε[υ̃(t)] in place of Aε[υ̃(·, t)].
Integrating (3.76) we get

Aε[υ̃(t)] ≤ Aε[υ̃(0)] e−Cδt + C γ(ε)α2(r)
(
1− e−Cδt

)
(3.77)

≤ max
{
Aε[υ̃(0)] , C γ(ε)α2(r)

}
,

where Cδ := Λ δ(ε)
3 , C is a positive constant independent of ε, υ̃, and the coefficient γ(ε) is given in

(3.53). We see by (3.77) that the solution ũ evolves exponentially towards the slow channel (3.52).
In view of (3.77), the estimate (3.55) yields

(3.78)

|ξ̇i| ≤ C
[
δ(ε) ε−6β(r)

(
A1/2
ε [υ̃(0)] + γ1/2(ε)α(r)

)
+
(
δ(ε) + µ(ε)ε2

)
ε−2α(r)+µ(ε) ε−4Aε[υ̃(0)]
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+ δ(ε) ε−4
(
Aε[υ̃(0)] + γ(ε)α2(r)

)
+ µ(ε) ε−2

(
A1/2
ε [υ̃(0)] + γ1/2(ε)α(r)

)]
,

and in the slow channel (3.52) we have

(3.79) Aε[υ̃(0)] ≤ c γ(ε)α2(r),

so (3.78) on its turn gives

(3.80) |ξ̇i| ≤ C max
{ (
δ(ε) + µ(ε)ε2

)
ε−2 , δ(ε)ε−4γ(ε)α(r) , µ(ε)ε−2γ1/2(ε)

}
α(r),

where α(r) is exponentially small in ε (see the detailed definition in Appendix and the estimate
(4.2)).

So, provided that (3.29) is satisfied, and if

(3.81)
(
δ(ε) + µ(ε)ε2

)
ε−2 � α−1 , δ(ε)ε−4γ(ε)� α−2 and µ(ε) ε−2 γ1/2(ε)� α−1,

by (3.80) we have

|ξ̇i| = O(e−c/r),

and the solution ũ stay in the channel for an exponentially long time.
Note that any δ(ε), µ(ε) of polynomial or negative polynomial order in ε satisfy (3.81). �

4. Appendix

In §4.2-§4.2 we prove various estimates for the non mass-conserving manifold approximation
used throughout this paper, and collect together existing results thereof from the work of Carr and
Pego, [11]. Some of the estimates have been also proven in [4] and then used in their integrated
version for the mass-conserving case. Then in §4.3 we derive certain a priori energy estimates for
establishing the well-posedness of the mass-conserving problem considered in §3.

4.1. Estimates for the stationary Dirichlet problem (2.7). As it is clear from the definition
(2.10), many of our subsequent estimates involving uh, rest upon certain properties of the stationary
states φ of (1.1), namely the solutions of the Dirichlet problem (2.7). In this section we record
these properties and for their proof we refer to [11].

Since φε(0, `,±1) depends on ε and ` only through the ratio r = ε/`, we may define

(4.1) α±(r) := F
(
φε(0, `,±1)

)
, β±(r) := 1∓ φε(0, `,±1).

In what follows, C will denote a positive constant not necessarily the same at each occurrence
and we stress that C is independent of ε, x, hj ’s, j’s.

Proposition 4.1 ([11, Proposition 3.4]). There exists r0 > 0 such that if 0 < r < r0, then

α±(r) =
1

2
K2
±A

2
± exp

(−A±
r

)[
1 +O

(
r−1 exp

(−A±
2r

))]
,(4.2)

β±(r) = K± exp
(−A±

2r

)[
1 +O

(
r−1 exp

(−A±
2r

))]
,(4.3)

where

A± := f ′(±1) > 0,(4.4)

K± := 2 exp

[∫ 1

0

( A√
2F (±t)

− 1

1− t

)
dt

]
,(4.5)
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with A := min{A+, A−}, and the asymptotic formulas (4.2), (4.3) also hold when they are differ-
entiated a finite number of times, e.g.

(4.6) α′+(r) = −A+ r
−2 α+(r)

[
1 +O

(
r−1 exp

(−A+

2r

))]
.

Proposition 4.2 ([11, Lemma 7.4]). Let 0 < r < r0. Then there exist constants C1 ∈ (0, 1) and
C2 > 0 such that, for |x± `

2 | ≤ ε,
|φ(x, `,±1)| ≤ C1,(4.7a)

F (φ(x, `,±1)) ≥ C2.(4.7b)

Proposition 4.3 ([11, Lemma 7.5]). For |x| ≤ 2ε, we have

|φ(x, `,±1)− (−1)j | ≤ Cβ(r),(4.8a)

|φx(x, `,±1)| ≤ Cε−1β(r).(4.8b)

Proposition 4.4 ([11, Lemma 7.7]). We have

(4.9)

∫ `/2

−`/2
|φx| dx ≤ 2,

∫ `/2

−`/2
|φxx| dx ≤ Cε−1,

∫ `/2

−`/2
|φxx|2 dx ≤ Cε−3.

Beside the above estimates for φ and its derivatives with respect to x, we will also need estimates
on the derivatives φ`(x, `,±1) := ∂

∂`φ(x, `,±1).

Proposition 4.5 ([11, Lemma 7.8]). For x ∈ [−`, `],

(4.10) φ`
(
x, `,±1

)
= −1

2
sgn(x)φx

(
x, `,±1

)
+ w

(
x, `,±1

)
,

where, for x 6= 0,

(4.11) w
(
x, `,±1

)
= ε−1 `−2 α′±(r)φx(|x|, `,±1)

∫ |x|
`/2

φx
(
s, `,±1

)−2
ds,

and

(4.12) w
(
0, `,±1

)
=
−ε−1 `−2 α′±(r)

φxx(0, `,±1)
.

Proposition 4.6 ([11, Lemma 7.9]). Let w be defined in Proposition 4.5. There exists r0 > 0 such
that if 0 < r < r0, then

|w
(
x, `,±1

)
| ≤ Cε−1β±(r), for x ∈

[
− `

2
− ε, `

2
+ ε
]
,(4.13)

|w
(
x, `,±1

)
| ≤ Cε−1α±(r), for

∣∣x± `

2

∣∣ < ε.(4.14)

Lemma 4.7 ([11, Lemma 7.10]). For x ∈ [− `
2 − ε,

`
2 + ε], x 6= 0,

(4.15)
∣∣wx

(
x, `,±1

)∣∣ =

∣∣∣∣φ`x(x, `,±1
)

+
1

2
sgn(x)φxx

(
x, `,±1

)∣∣∣∣ ≤ C ε−2 r−1 β±(r).

One may show that w is C2 on [0, `] and satisfies (see [11, (7.19)])

(4.16) ε2wxx = f ′(φ)w,

which together with (4.13) yields

(4.17)
∣∣wxx

(
x, `,±1

)∣∣ ≤ C ε−3 β±(r).
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4.2. Estimates on the states uh. For j = 1, 2, . . . , N + 1, and the `j that are given in (2.9), we
set

(4.18) rj :=
ε

`j
,

and

(4.19) αj :=

{
α+(rj), for j even,

α−(rj), for j odd,
and βj :=

{
β+(rj), for j even,

β−(rj), for j odd.

We also set

(4.20) r := max
1≤j≤N+1

rj =
ε

minj `j
,

and

(4.21) α(r) := max
1≤j≤N+1

αj , and β(r) := max
1≤j≤N+1

βj .

From the first estimate in (4.9) and the zero boundary values in (2.7) we deduce that |φ| ≤ 2 on
[− `

2 ,
`
2 ]. Therefore, for each j = 1, . . . , N + 1,

(4.22) |φj | ≤ 2 on
[
mj − `j

2 , mj +
`j
2

]
,

and as a consequence of the definition (2.10), uh is uniformly bounded on [0, 1], thus f(uh) and
f ′(uh) are uniformly bounded too.

Similarly, from the second estimate in (4.9) we get that

(4.23) |φjx| ≤ Cε−1 on
[
mj − `j

2 , mj +
`j
2

]
.

By (2.15) and (4.22) we get

(4.24) |φjxx| ≤ Cε−2 on
[
mj − `j

2 , mj +
`j
2

]
,

and a differentiation of (2.15) together with (4.22), (4.23) yields

(4.25) |φjxxx| ≤ Cε−3, on
[
mj − `j

2 , mj +
`j
2

]
,

and in general, we may see that, see also in [4]

(4.26)
∣∣∣∂nxφj∣∣∣ ≤ Cε−n, on

[
mj − `j

2 , mj +
`j
2

]
.

By Proposition 4.3, we have

|φj(x)− (−1)j | ≤ Cβ(r),(4.27a)

|φjx(x)| ≤ Cε−1β(r), for |x−mj | < 2ε.(4.27b)

As a consequence of (4.27a), we have

(4.28) |f(φj)| = |f(φj)− f((−1)j)| ≤ Cβ(r), for |x−mj | < 2ε,

which on its turn together with (2.15) implies

(4.29) |φjxx| ≤ Cε−2β(r), for |x−mj | < 2ε.
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Proposition 4.8 ([11, Lemma 8.2]). Let r0 > 0 be sufficiently small. There exist constants C1, C2

such that if we assume that ε/`j < r0 and ε/`j+1 < r0 for j ∈ {1, 2, . . . , N}, then∣∣φj(x) − φj+1(x)
∣∣ ≤ C1

∣∣aj − aj+1
∣∣,(4.30a) ∣∣∣φjx(x) − φj+1

x (x)
∣∣∣ ≤ C2 ε

−1
∣∣∣aj − aj+1

∣∣∣, for |x− hj | < ε.(4.30b)

Moreover, by (2.15), mean value theorem and (4.30a) we have, with some θx between φj(x) and
φj+1(x),

|φjxx(x)− φj+1
xx (x)| = ε−2|f(φj(x))− f(φj+1(x))|

= ε−2|f ′(θx)| |φj+1 − φj|
≤ Cε−2

∣∣aj − aj+1
∣∣, for |x− hj | < ε.(4.31)

By differentiating (2.15), we may proceed recursively to get, for n = 1, 2, 3, · · · ,

|∂nxφj − ∂nxφj+1| ≤ Cε−n
∣∣aj − aj+1

∣∣, for |x− hj | < ε.(4.32)

Considering the smooth cut-off function χj let us notice that, for n = 1, 2, 3, · · · ,

(4.33)
∣∣∣ dn
dxn

χj
∣∣∣ ≤ Cε−n.

By (2.13), (4.23) and (4.33) we have

(4.34) |uhx| ≤ Cε−1, on [0, 1],

and by (2.14), (4.24), (4.30), (4.33) we easily get

(4.35) |uhxx| ≤ Cε−2, on [0, 1].

Differentiating (2.14) we immediately get
(4.36)

uhxxx =


φjxxx ,mj ≤ x ≤ hj − ε,
χjxxx

(
φj+1 − φj

)
+ 3χjxx

(
φj+1
x − φjx

)
+ 3χjx

(
φj+1
xx − φjxx

)
+ (1− χj)φjxxx + χjφj+1

xxx , |x− hj | < ε,

φj+1
xxx , hj + ε ≤ x ≤ mj+1.

By (4.25), (4.32), (4.33), (4.36), we easily obtain

(4.37) |uhxxx| ≤ Cε−3, on [0, 1].

Also for a smooth function F = F(s), s ∈ [0, 1], it is straightforward to show that the remainder
R(χ) of the linear Lagrange interpolation of F at s = 0 and s = 1,

(4.38) R(x) := F(x) − (1− x)F(0)− xF(1), x ∈ [0, 1],

is given by

(4.39) R(x) = (1− x)

∫ χ

0
sF ′′(s) ds + x

∫ 1

x
(1− s)F ′′(s) ds.

We now use (2.13) and employ (4.38)-(4.39) for the function

(4.40) F(s) := f((1− s)φj + sφj+1),
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to get

(4.41) L b(uh) = ε2χjxx
(
φj+1 − φj

)
+ 2ε2χjx

(
φj+1
x − φjx

)
+ Rj , for |x− hj | < ε,

where

(4.42) Rj =
(
φj+1 − φj

)2 [
(1− χj)

∫ χj

0
sf ′′
(
θ(s)

)
ds + χj

∫ 1

χj
(1− s)f ′′

(
θ(s)

)
ds

]
,

and θ(s) := (1− s)φj + sφj+1.
We then combine (4.41)-(4.42) with (4.30), (4.33) to conclude that

(4.43) |L b(uh)| ≤ Cα(r), for |x− hj | < ε;

cf. [11, Theorem 3.5].
At this point let us recall (2.16), i.e. L b(uh) = 0, for |x−hj | ≥ ε, which together with boundary

values (2.19) and (4.43) show that uh “almost” satisfy the steady-state problem (2.2).

Remark 4.9. To show that

(4.44) uhj ∼ −uhx, as r → 0, uniformly on Ij := [mj , mj+1]

first notice that only φj and φj+1 depend on hj , so the support of uhj is contained in [hj−1−ε, hj+1+

ε].
Applying (4.10) for the translate φj of φ,

φj(x) := φ
(
x− hj−1+hj

2 , hj − hj−1, (−1)j
)
, x ∈ [hj−1 − ε, hj + ε],

we have, for x ∈ [hj−1 − ε, hj + ε],

∂

∂hj
φj = φjx

∂

∂hj

(
x− hj−1+hj

2

)
+ φj`

∂

∂hj

(
hj − hj−1

)
= − 1

2
φjx −

1

2
sgn(x−mj)φ

j
x + wj ,(4.45)

therefore

(4.46)
∂

∂hj
φj = −φjx + wj , in Ij := [mj , hj + ε],

since sgn(x−mj) > 0.
Similarly, we obtain

(4.47)
∂

∂hj
φj+1 = −φj+1

x − wj+1, for x ∈ [hj , hj+1],

and thus

(4.48)
∂

∂hj

(
φj+1 − φj

)
= φjx − φj+1

x − wj − wj+1, in Ij .
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So recalling that uh =
(
1− χj

)
φj + χj φj+1, and noticing that χjx = −χjhj , it is straightforward

to see that

∂

∂hj
uh = χjx

(
φj − φj+1

)
+ χj

∂

∂hj

(
φj+1 − φj

)
+

∂

∂hj
φj

(4.48)
== χjx

(
φj − φj+1

)
+ χj

[
φjx − φj+1

x − wj − wj+1
]
− φjx + wj

= χjx
(
φj − φj+1

)
+ χj

[
φjx − φj+1

x

]
− χj

[
wj + wj+1

]
− φjx + wj

(2.13)
== −uhx +

(
1− χj

)
wj − χjwj+1 for |x− hj | < ε.(4.49)

For the translate φj+1 of φ,

φj+1(x) := φ
(
x− hj+hj+1

2 , hj+1 − hj ; (−1)j+1
)

x ∈ [hj − ε, hj+1 + ε]

we have, by (4.10),

∂

∂hj
φj+1 = φj+1

x

∂

∂hj

(
x− hj+hj+1

2

)
+ φj+1

`

∂

∂hj

(
hj+1 − hj

)
= − 1

2
φj+1
x +

1

2
sgn(x−mj+1)φj+1

x − wj+1 = −wj+1, in [mj+1, hj+1 + ε],(4.50)

since sgn(x−mj+1) > 0.
Recall that

uh =
(
1− χj+1

)
φj+1 + χj+1 φj+2, x ∈ [mj+1, mj+2],

so using (4.50) and noticing that χj+1
hj

= 0 = φj+2
hj

, it is straightforward to see that

(4.51)
∂

∂hj
uh =

(
1− χj+1

) ∂

∂hj
φj+1 (4.50)

== −
(
1− χj+1

)
wj+1, x ∈ [mj+1, hj+1 + ε].

Analogously, taking into account that uh =
(
1− χj−1

)
φj−1 + χj−1 φj for x ∈ [mj−1, mj ], using

(4.45) and noticing that χj−1
hj

= 0 = φj−1
hj

, we obtain that

(4.52)
∂

∂hj
uh = χj−1 ∂

∂hj
φj = χj−1wj , x ∈ [hj−1 − ε, mj ].

Gathering (4.49), (4.51), (4.52) we have that

(4.53)
∂

∂hj
uh =



χj−1wj , for hj−1 − ε ≤ x ≤ mj ,

−uhx + wj , for mj ≤ x ≤ hj − ε,
−uhx +

(
1− χj

)
wj − χjwj+1, for |x− hj | < ε,

−uhx − wj+1, for hj + ε ≤ x ≤ mj+1,

− (1− χj+1)wj+1, for mj+1 ≤ x ≤ hj+1 + ε.

Then (4.44) follows from (4.53) combined with (4.13)-(4.14). See also in [4], for some analogous
results.
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4.3. A priori estimates for the problem (1.1)-(BC1)-(BC2)-(MC). For the well-posedness
of the initial and boundary value problem we may argue as in [15, §2]; next we derive the estimates
needed in our case where we have replaced the b.c. at x = 1 with the mass conservation condition
and added the Allen-Cahn lower order term in the pde.

Local in time existence may be proved by fixed-point theory, applying a Picard-type iteration
scheme. In order to prove global existence, i.e. existence on [0, T ] for any T > 0, we need to
derive certain a priori uniform estimates on u. To this aim, first notice that by (MC), (ACH) and
(BC1)-(BC2) we have

0 =
d

dt

∫ 1

0
u(x, t) dx =

∫ 1

0
ut(x, t) dx

= −δ(ε)
∫ 1

0

(
ε2uxx −W ′(u)

)
xx
dx + µ(ε)

∫ 1

0

(
ε2uxx −W ′(u)

)
dx

= −δ(ε)ε2uxxx(1, t) − µ(ε)

∫ 1

0
W ′(u) dx,

so we have

(4.54) µ(ε)

∫ 1

0
W ′(u) dx = −δ(ε)ε2uxxx(1, t).

Also, as in the proof of Lemma 2.7, we can see that for differentiable υ and any positive ε1,

(4.55) υ2(1, t) ≤ ‖υ‖2∞ ≤ 2ε1‖υx‖2 +
2

ε1
‖υ‖2.

For the special case of

(4.56) W (u) =
1

4
(u2 − 1)2, thus W ′(u) = u3 − u,

we see that,

W ′(u) ≤ c1W (u) + c2, ∀u ∈ R,

for some positive constants c1, c2 independent of u, and so

(4.57)

∫ 1

0
|W ′(u)| dx ≤ c1

∫ 1

0
W (u) dx+ c2.

Growth estimate for the energy: We set

(4.58) E(t) :=

∫ 1

0

ε2

2
u2
x +W (u) dx,

and we have

d

dt
E(t) =

∫ 1

0
ε2ux (ut)x + W ′(u)ut dx

= −
∫ 1

0

(
ε2uxx − W ′(u)

)
ut dx,
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where we integrated by parts the first term and applied (BC1). Then, by the pde (ACH) and
integrations by parts combined with (BC1)-(BC2) we get

d

dt
E(t) =

∫ 1

0

(
ε2uxx − W ′(u)

) [
δ(ε)

(
ε2uxx −W ′(u)

)
xx
− µ(ε)

(
ε2uxx −W ′(u)

)]
dx

=− δ(ε)
∫ 1

0

[(
ε2uxx − W ′(u)

)
x

]2
dx − µ(ε)

∫ 1

0

[
ε2 uxx − W ′(u)

]2
dx

+ δ(ε) ε2 uxxx(1, t)
[
ε2 uxx(1, t) − W ′

(
u(1, t)

)]
(4.54)
= − δ(ε)

∥∥(ε2uxx − W ′(u)
)
x

∥∥2 − µ(ε)
∥∥ε2 uxx − W ′(u)

∥∥2

− µ(ε)
[
ε2 uxx(1, t) − W ′

(
u(1, t)

)] ∫ 1

0
W ′(u) dx

≤− δ(ε)
∥∥(ε2uxx − W ′(u)

)
x

∥∥2 − µ(ε)
∥∥ε2 uxx − W ′(u)

∥∥2

+
µ(ε)

4ε

[
ε2 uxx(1, t) − W ′

(
u(1, t)

)]2
+ ε µ(ε)

(∫ 1

0
W ′(u) dx

)2

.(4.59)

By (BC1) we have

(4.60)

∫ 1

0
W ′(u) dx =

∫ 1

0

(
W ′(u)− ε2uxx

)
dx ≤

∥∥W ′(u)− ε2uxx
∥∥ ,

and by (4.55) for υ = W ′(u)− ε2uxx therein, we have

(4.61)
µ(ε)

4ε
υ2(1, t) ≤ µ(ε) ε1

2ε
‖υx‖2 +

µ(ε)

2ε ε1
‖υ‖2,

so, choosing ε, ε1, so that

(4.62)
µ(ε) ε1

2ε
≤ δ(ε) and 0 ≤ 1− ε− 1

2ε ε1
,

we substitute (4.60), (4.61) into (4.59) to get that

d

dt
E(t) ≤ 0.

Therefore, E(t) ≤ E(0) that is

(4.63)
ε2

2
‖ux‖2 +

∫ 1

0
W (u) dx ≤ E0 :=

∫ 1

0

ε2

2
(u0)2

x +W
(
u0

)
dx,

with u0(x) := u(x, 0), and so

(4.64)
ε2

2
‖ux‖2 ≤ E0,

and

(4.65)

∫ 1

0
W (u) dx ≤ E0.

Furthermore, integrating (4.59) we get

(4.66)

∫ t

0

∥∥ε2 uxx − W ′(u)
∥∥2

H1 dτ ≤ C, 0 ≤ t ≤ T,
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for some constant C depending on u0, T and δ(ε), µ(ε), ε.
Remark: A trivial calculus shows that the weakest condition (4.62) for δ(ε), µ(ε) is attained

by choosing ε1/ε = 27/8 for ε = 2/3, and so 27
16 µ(ε) ≤ δ(ε). Let us also emphasize that the

condition c µ(ε) ≤ δ(ε) for some c > 0, is weaker than the assumption (3.30) for establishing the

slow evolution within the channel (3.52) (Theorem 3.2); e.g. take δ(ε), µ(ε) such that ε−3/2µ(ε) �
δ(ε) = O(ε8).

Growth estimate for ‖u‖2 : Multiply (ACH) by u, then integrate with respect to x and apply
(BC1)-(BC2) to get

1

2

d

dt
‖u‖2 + δ(ε) ε2 ‖uxx‖2 + µ(ε) ε2 ‖ux‖2

= − δ(ε) ε2 uxxx(1, t)u(1, t) − δ(ε)

∫ 1

0

(
W ′(u)

)
x
ux dx − µ(ε)

∫ 1

0
W ′(u)u dx

= − δ(ε) ε2 uxxx(1, t)u(1, t) − δ(ε)

∫ 1

0
W ′′(u)u2

x dx − µ(ε)

∫ 1

0
W ′(u)u dx

W ′′≥−1

≤ − δ(ε) ε2 uxxx(1, t)u(1, t) + δ(ε)

∫ 1

0
u2
x dx − µ(ε)

∫ 1

0
W ′(u)u dx

(4.54)
= δ(ε) ‖ux‖2 + µ(ε)

(
u(1, t)

∫ 1

0
W ′(u) dx −

∫ 1

0
W ′(u)u dx

)
≤ δ(ε) ‖ux‖2 + µ(ε)

(
‖u‖2∞ +

∥∥W ′(u)
∥∥2

1

)
(4.55)

≤ δ(ε) ‖ux‖2 + µ(ε)
(

2 ‖ux‖2 + 2 ‖u‖2 +
∥∥W ′(u)

∥∥2

1

)
.(4.67)

Regarding the term ‖W ′(u)‖1 in (4.67), we combine (4.57) and (4.65) to see that

(4.68)
∥∥W ′(u)

∥∥
1
≤ c1 ‖W (u)‖1 + c2 ≤ C.

In view of (4.64) and (4.68), the estimate (4.67) yields

(4.69)
1

2

d

dt
‖u‖2 + δ(ε) ε2 ‖uxx‖2 + µ(ε) ε2 ‖ux‖2 ≤ C1‖u‖2 + C2,

the constants C1, C2 depending only on u0 and δ(ε), µ(ε).
In particular, (4.69) implies

1

2

d

dt
‖u‖2 ≤ C1‖u‖2 + C2,

and integrating this inequality we get

(4.70) ‖u(·, t)‖2 ≤ e2C1t‖u0‖2 + C2(e2C1t − 1)/C1,

and so

‖u(·, t)‖2 ≤ c1‖u0‖2 + c2, 0 ≤ t ≤ T,
with c1 = e2C1T , c2 = C2(e2C1T − 1)/C1, that is

(4.71) ‖u‖ ≤ C, 0 ≤ t ≤ T,

with a constant C depending only on u0, T and δ(ε), µ(ε).
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By (4.64) and (4.71) we get that

(4.72) ‖u(·, t)‖∞ ≤ C, 0 ≤ t ≤ T.
Now we return to (4.69), ignore the positive term ‖uxx‖, then integrate and employ (4.70) to get

‖u(·, T )‖2 + 2µ(ε) ε2

∫ t

0
‖ux‖2 dτ ≤ ‖u0‖2 e2C1t + C3

(
e2C1t − 1

)
,

therefore

(4.73)

∫ t

0
‖ux‖2 dτ ≤ C, 0 ≤ t ≤ T,

for some positive constant C depending only on u0, T and δ(ε), µ(ε), ε.
Returning once more to (4.69), we get as above that

(4.74)

∫ t

0
‖uxx‖2 dτ ≤ C, 0 ≤ t ≤ T,

as well.
For improving the regularity of the weak solution to be a classical one we may use a bootstrap

argument; see e.g. (2-20)-(2-25) of [15]. Let us also remark that in view of (3.6), the Hk-regularity
of u implies the Hk+1-regularity for the solution ũ of the integrated problem.

Uniqueness: Let u, v be solutions of the problem (ACH)-(BC1)-(BC2)-(MC) and consider the
difference v = u− v. In view of (ACH), we have

(4.75) vt = −δ(ε) ε2vxxxx + δ(ε)
(
W ′(u) − W ′(v)

)
xx

+ µ(ε) ε2vxx − µ(ε)
(
W ′(u) − W ′(v)

)
,

the (BC1)-(BC2) yield the boundary conditions

vx(0, t) = vx(1, t) = 0,(4.76)

vxxx(0, t) = 0,(4.77)

and (MC) implies

(4.78)

∫ 1

0
v(x, t) dx = 0, t > 0.

Multiply the pde (4.75) by v, then integrate with respect to x and apply (4.76)-(4.77) to get

(4.79)
1

2

d

dt
‖v‖2 + δ(ε) ε2 ‖vxx‖2 + µ(ε) ε2 ‖vx‖2 = −δ(ε) ε2 vxxx(1, t) v(1, t)

+ δ(ε)

∫ 1

0

(
W ′(u) − W ′(v)

)
vxx dx − µ(ε)

∫ 1

0

(
W ′(u) − W ′(v)

)
v dx.

Let us next estimate the terms in the RHS of (4.79). To this aim, we setKT := sup
{
‖u(·, t)‖∞, ‖υ(·, t)‖∞ :

0 ≤ t ≤ T
}

and L = max
{
|W ′′(w)| : |w| ≤ KT

}
. In view of (4.72) we have KT <∞, and L depends

on u, υ,W, T, but it is independent of t.
We then have that

(4.80)
∣∣W ′(υ(x, t)

)
− W ′

(
u(x, t)

)∣∣ ≤ L |υ(x, t)− u(x, t)|, 0 ≤ t ≤ T.
Regarding the first term in the RHS of (4.79), we clearly have

v(1, t) =

∫ 1

y
vx dx + v(y, t) ≤

∫ 1

0
|vx| dx + v(y, t),
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and integrate this inequality with respect to y, to get, by virtue of (4.78),

(4.81) v(1, t) ≤
∫ 1

0
|vx| dx +

∫ 1

0
v(x, t) dx = ‖vx(·, t)‖1 .

Moreover, by (4.54) and (4.80) we get

(4.82) δ(ε) ε2 vxxx(1, t) = µ(ε)

∫ 1

0

(
W ′(υ) − W ′(u)

)
dx ≤ Lµ(ε)

∫ 1

0
|υ − u| dx = Lµ(ε) ‖v‖1 .

Consequently, by (4.81)-(4.82) we obtain that

δ(ε) ε2 vxxx(1, t) v(1, t) ≤ L2 µ(ε)

4ε
‖v‖21 + ε µ(ε) ‖vx‖21

≤ L2 µ(ε)

4ε
‖v‖2 + ε µ(ε) ‖vx‖2 ,(4.83)

for an arbitrary positive ε < 1.
As for the second term in the RHS of (4.79), again we use (4.80) to see that

δ(ε)

∫ 1

0

(
W ′(u) − W ′(v)

)
vxx dx ≤ δ(ε)L

∫ 1

0

∣∣u− v∣∣ |vxx| dx
≤ L2 δ(ε)

4ε
‖v‖2 + ε δ(ε) ‖vxx‖2 ,(4.84)

and for the last term in (4.79), estimate (4.80) yields the bound

(4.85) µ(ε)

∫ 1

0

(
W ′(u) − W ′(v)

)
v dx ≤ µ(ε)L

∫ 1

0

∣∣u− v∣∣ |v| dx = µ(ε)L ‖v‖2 .

We apply (4.83), (4.84), (4.85) into (4.79) to obtain

(4.86)
1

2

d

dt
‖v‖2 + δ(ε) (ε2−ε) ‖vxx‖2 + µ(ε) (ε2−ε) ‖vx‖2 ≤

(
L2 µ(ε)

4ε
+
L2 δ(ε)

4ε
+ µ(ε)L

)
‖v‖2 .

Therefore

(4.87)
d

dt
‖v‖2 ≤ c ‖v‖2 , 0 ≤ t ≤ T,

for some constant c depending on δ(ε), µ(ε), T, but independent of t and integrating with respect
to t, we obtain

‖v(·, t)‖2 ≤ ect ‖v(·, 0)‖2 = 0, 0 ≤ t ≤ T,
that is u ≡ υ, so the solution of (ACH)-(BC1)-(BC2)-(MC) is unique.
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