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The limit Wigner measure of a WKB function satisfies a simple transport equation in phase-

space and is well suited for capturing oscillations at scale of order O(ε), but it fails, for

instance, to provide the correct amplitude on caustics where different scales appear. We define

the semi-classical Wigner function of an N-dimensional WKB function, as a suitable formal

approximation of its scaled Wigner function. The semi-classical Wigner function is an oscillat-

ory integral that provides an ε-dependent regularization of the limit Wigner measure, it obeys a

transport-dispersive evolution law in phase space, and it is well defined even at simple caustics.

1 Introduction and preliminaries

If ψε(x) is a family of functions that decay rapidly at infinity, and ε > 0 is a small

parameter, the scaled Wigner transform of ψε is defined.

Wε(x, k) =
1

(2π)N

∫
RN

e−ik·yψε
(

x +
εy

2

)
ψε

(
x − εy

2

)
dy, (x, k) ∈ RN × RN, (1.1)

where ψε(x) is the complex conjugate of ψε. This is a real function in phase space and its

k-integral gives the amplitude of ψε(x),∫
RN

Wε(x, k) dk = |ψε(x)|2. (1.2)

Hence, we may think of Wε as wave number resolved energy density. This is not quite

precise however, because Wε is not in general positive, except when ψε is a Gaussian

function (see Lions & Paul [16]), but it always becomes positive in the high frequency limit.

In particular, as the small parameter ε tends to zero, the Wigner function Wε tends weakly

to a positive measure W 0 called the limit Wigner measure [16]. One remarkable property

of the Wigner transform is the following: If ψε is taken to be the solution of a large

class of homogenization problems for evolution equations, then the corresponding limit

Wigner measure solves a simple transport equation in phase space. Once the limit Wigner

measure is known one can recover useful information about the underlying function ψε

as ε → 0. This makes the Wigner transform a particularly powerful tool in the study of

high frequency wave propagation problems (e.g. see the book by Tatarskii [23], and the

expository paper by Papanicolaou & Ryzhik [19]).
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To illustrate this fact we consider a concrete problem. It is well known that the paraxial

approximation for several classical wave equations leads to the Cauchy problem for the

time-dependent (N + 1)-dimensional Schrödinger equation with fast space-time scales

[14, 22]

iεψεt (x, t) = −ε2

2
∆ψε(x, t) + V (x)ψε(x, t), x ∈ RN, (1.3)

and highly oscillatory initial data

ψε(x, 0) = ψε0(x) = A0(x) exp
(
iS0(x)/ε

)
. (1.4)

Note that the small parameter ε appears in both the equation and the initial data. We are

interested in the high frequency limit of (1.3), (1.4), that is, in the limit of ψε as ε tends to

zero.

In the standard high frequency approximation (WKB method) we look for an asymp-

totic solution of (1.3), (1.4), in the same form as the initial data

ψε(x, t) = A(x, t) exp
(
iS(x, t)/ε

)
. (1.5)

If we plug in this into (1.3) and equate powers of ε, we obtain evolution equations for the

phase S(x, t) and the amplitude A(x, t),

St +
1

2
|∇xS |2 + V (x) = 0, S(x, 0) = S0(x), (1.6)

(A2)t + ∇x · (A2∇xS) = 0, A(x, 0) = A0(x). (1.7)

Equation (1.6) is called the eikonal equation and (1.7) the transport equation. The

solution of the eikonal equation can be constructed by the method of characteristics

(rays). The characteristic curves x(q, t) and k(q, t) = Sx(x(q, t), t) are first obtained by

solving the ODE system

d

dt
x = k,

d

dt
k = −∇V (x), (1.8)

with x(0) = q and k(0) = ∇S0(q). Then the phase S = S(x(q, t), t) is obtained by integrating

the equation

dS

dt
= St + |∇xS |2 =

|k|2
2

− V , S(x, 0) = S0(q),

along the characteristics x(q, t).

Since (1.6) is a nonlinear equation, it has, in general, a smooth solution only up to

some finite time tc, when the rays cross each other and singularities are developed that

are called caustics. At a caustic point the Jacobian J(q, t) of the ray map q �→ x(q, t) is

zero, and the amplitude becomes infinite. This follows from the formula

A(x, t) = A0(q)J−1/2(q, t), (1.9)

which is obtained by integrating the transport equation over a ray tube and then using

the divergence theorem [2].
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Let us now see how one can treat this problem using the Wigner transform formalism.

If we denote by fε(x, k, t) the Wigner transform of the solution ψε(x, t) of (1.3), (1.4), then

fε satisfies the Wigner equation ([16], [19], [9])

fεt (x, k, t) + k · ∇xf
ε(x, k, t) + Zεf

ε(x, k, t) = 0, (1.10)

where the operator Zε is defined by the convolution with respect to the momentum k,

Zεf(x, k, t) = f(x, k, t) ∗k
i

(2πε)N

∫ ∞

−∞
exp(−ik · y)

(
V

(
x +

ε

2
y

)
−V

(
x − ε

2
y

))
dy. (1.11)

Assuming that the potential V is smooth enough, we can expand V (x ± ε
2
y) into Taylor

series to get

1

ε

(
V

(
x +

ε

2
y

)
− V

(
x − ε

2
y

))
= y · ∇V (x) +

∑
m�1

( ε
2

)2m ∑
|α|=2m+1

yα

α!
DαV (x),

so that we can rewrite equation (1.10) as [24]

fεt + k · ∇xf
ε − ∇V · ∇kf

ε =
∑
m�1

cmε
2m

∑
|α|=2m+1

DαVDαkf
ε, (1.12)

where cm = (−1)m

22m(2m+ 1)!
, m = 0, 1, . . . . The initial condition for (1.10) or (1.12) is the Wigner

transform of the initial data (1.4) that we denote by fε0,

fε0(x, k, t = 0) =
1

(επ)N

∫
RN

A0(x + σ)A0(x − σ)e
i
ε
(S0(x+σ)−S0(x−σ)−2k·σ) dσ. (1.13)

In the formal limit ε = 0, fε tends to the limit Wigner measure f0 and the dispersive

part of the Wigner equation, that is, the right hand side of (1.12), vanishes. It follows that

f0 satisfies the Liouville equation

f0
t (x, k, t) + k · ∇xf

0(x, k, t) − ∇V (x) · ∇kf
0(x, k, t) = 0 , (1.14)

which is a simple transport equation in the phase space R2N
xk . The initial condition for

(1.14) is the (weak) limit of fε0, as ε → 0, in (1.13),

f0
0(x, k, t = 0) = A2

0(x)δ(k − ∇S0(x)). (1.15)

It is not difficult to verify that the solution of (1.14), (1.15), in the time interval [0, T ],

T < tc, is given by

f0(x, k, t) = A2(x, t)δ(k − ∇xS(x, t)), (1.16)

where S(x, t) and A(x, t) are solutions of the eikonal (1.6) and transport (1.7) equations,

respectively. Thus, from the limit Wigner measure we can recover the modulus of the

amplitude A and the gradient of the phase S of the WKB approximation. In particular,
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we have ∫
RN

f0(x, k, t) dk = A2(x, t). (1.17)

However, the Wigner approach has certain advantages over the WKB method since it

provides flexibility to treat more general initial data; we refer elsewhere [21, 13, 8] for a

thorough comparison of the two methods.

Besides its connection with classical wave propagation, equation (1.3)–(1.4) is the fun-

damental model of quantum mechanics [17], where ψε is the probability density of the

position of a particle with unit mass, and ε plays the role of the Planck constant. Whereas

the limit Wigner measure is always positive and corresponds to the classical motion, the

scaled Wigner function is highly oscillatory and sign changing, thus taking into account

quantum interference and coherence phenomena. In this context, both the questions of

approximation of the scaled Wigner function as well as its evolution in time, are of high im-

portance. See the references [3, 4, 18, 24] and more recently [20, 11] and references therein.

Our motivation for the present work comes from the question of what can be said

about the solution fε of the Wigner equation (1.12) with WKB initial data (1.13) when ε

is small but not zero. Formally speaking, equation (1.12) is a transport-dispersive equation

infinitely singular (as ε goes to zero) and therefore serious analytical as well as numerical

difficulties are anticipated. On the other hand, even simple one dimensional examples [8],

show that fε has a very complicated structure, which is expressed through generalized

Airy functions. Therefore, we search for a suitable approximant of fε which, to some

extend, captures some of the basic features of fε.

Although in this paper we are interested in higher dimensions (N � 2), we recall

here some observations for the one-dimensional case (N = 1) considered in [8], to give

some insight about the solution fε of the Wigner equation. Let us consider the equation

(1.3)–(1.4) for V ≡ 0, with initial data A0(x) = 1 and S0(x) = −x3/3. This special case can

be worked out explicitly. The initial scaled Wigner function is given by the Airy function

fε0(x, k, t = 0) =
2

2
3

ε
2
3

Ai

(
2

2
3

ε
2
3

(k + x2)

)
, (1.18)

whereas the initial limit Wigner measure, that is the limit of fε0 as ε → 0, is f0
0(x, k, t =

0) = δ(k + x2). If one integrates fε0 with respect to k and uses the identity
∫

R
Ai(z)dz = 1,

then one recovers the amplitude (A0 = 1). Alternatively, one can integrate f0
0 to reach the

same result. The observation here is that although fε0 is “rich” and has a complex structure

(the Airy oscillations), it conveys no extra information – compared to f0
0 – as far as the

amplitude is concerned. Let us also observe that fε0 provides the proper regularization of

f0
0 . Loosely speaking, before f0

0 becomes a Dirac mass in the limit ε → 0, it was an Airy

function and not, for instance, an ε-sequence of “top-hat”-functions. This is what always

happens in the single phase case, but also in the multi-phase case away from caustics.

On a caustic however, this “equivalence” of fε and f0 is lost, in the sense that f0 is

unable to provide the amplitude but fε can. Caustic points are the only points where

“keeping the ε” is crucial for recovering the correct amplitude. In our specific example,

a fold caustic appears at (xf, tf), tf > 0; see Filippas & Makrakis [8, § 4.1] for detailed
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calculations. Although f0 is a well defined Delta function on Rx × Rk for any t > 0, its

restriction at the point (xf, tf), which is formally given by f0(xf, k, tf) = δ(t2f(k − kf)
2),

is not a well defined distribution in Rk; see Lax [15, p. 547]. Therefore, the projection

identity (1.17) cannot be used for f0(xf, ·, tf) for computing the amplitude. Instead, one

has to use the scaled Wigner function

fε(xf, k, tf) =
2

2
3

ε
2
3

Ai

(
2

2
3

ε
2
3

t2f(k − kf)
2

)
,

and the projection formula (1.2) in order to recover the precise amplitude.

One way to see why an “object” like δ(y2) is not well defined, is by noting that if

φε(y) is a regularization of the Dirac mass δ(y) (that is, a sequence of smooth functions

that tends to δ(y) as ε tends to 0), then the limit of φε(y
2) is not uniquely defined but

depends on the sequence itself. Thus, at a caustic point, it is of high importance that the

proper regularization of f0 is the Airy and not, say, an ε-sequence of “top-hat”-functions.

Consequently, when working with f0, an important information – where f0 comes from –

is lost, and f0, which is rather efficient in describing quantities that involve oscillations at

a scale of order O(ε), fails to do so on caustics, where different scales (like O(ε
2
3 ) in our

example) develop.

The above discussion suggests that an essential characteristic that a reasonable ap-

proximant of fε should have, is to provide the proper regularization of the limit Wigner

measure.

In this work we consider equation (1.12) with WKB initial data (1.13), and for the

single-phase case, that is, for times prior to tc, we obtain an approximant f̃ε of fε. This

approximant is expressed in terms of a certain oscillatory integral PN (see (5.3) and (2.8)

below) and it has the following basic features:

(i) It is in agreement with the (scaled Wigner function of the) WKB solution, in a sense

that we will make precise later;

(ii) it provides the proper regularization of the limit Wigner Dirac mass;

(iii) it obeys a transport–dispersive evolution law which is in agreement with the

transport–dispersive character of the Wigner equation (1.12)–(1.13); and

(iv) it is well defined even on simple caustics at time tc. At such points the projection

formula (1.17) is inapplicable, but the integration of f̃ε with respect to k is meaningful.

Although an approximation result relating the integral of f̃ε and the exact amplitude

|ψε(x)|2 is still missing, this observation could be useful for numerical calculations.

Our strategy towards the construction of f̃ε, is the same as in the one dimensional case

[8], and can be roughly described as follows. Departing from the WKB solution (1.5), we

first define by (2.10) the semi-classical Wigner function W̃ ε, as a formal approximant of

the scaled Wigner function of a WKB function at a fixed time t. To this end, we introduce

and study a suitable N-dimensional phase integral that reduces to the Airy function when

N = 1. W̃ ε in fact provides the proper (PN) regularization of the limit Wigner Dirac

mass. We then define f̃ε as the evolution of the initial semi-classical Wigner function

(W̃ ε
0 ) under an appropriate evolution law (see (5.2)). The key point here is the derivation



6 S. Filippas and G. N. Makrakis

of the evolution law. This is done by requiring that the evolved semi-classical Wigner

function (f̃ε) be in agreement with the approximant W̃ ε for times t < tc. It then follows

that, f̃ε is given by the convolution of W̃ ε
0 with a suitable kernel G̃ε.

It is important to note that although the construction of f̃ε is based on the WKB solu-

tion, the evolution law for f̃ε incorporates the expected structure of fε, and provides some

insight in what one might expect from the Wigner equation (1.12)–(1.13). In particular, f̃ε

combines the transport of the initial data along the bicharacteristics, as it is required by

the Liouville part of the Wigner equation, with an ε-dependent dispersion mechanism as

required by the dispersive right-hand side of (1.12). The dispersion mechanism is realized

as a convolution of the transported initial data with the kernel G̃ε. As ε → 0 then f̃ε tends

to the limit Wigner Dirac mass, G̃ε tends to a Dirac mass, and we recover the Liouville

equation that the limit Wigner measure obeys.

The paper is organized as follows. In § 2 we define the semi-classical Wigner function

W̃ ε, as a formal approximant of the scaled Wigner Wε of a WKB function. To this end

we need to introduce a suitable phase integral PN and study some of its properties; this

is done in appendix A. We note that the semi-classical Wigner that corresponds to the

WKB solution (1.5), at each time t < tc, depends on the vector k − ∇xS(x, t) and the

third-derivative tensor Sxi,xj ,xk (x, t).

In § 3, we derive the evolution law of (k−∇xS(x, t)) and Sxi,xj ,xk (x, t) . The most technical

part, concerned with the study of a matrix differential equation, is moved to Appendix B.

These results will be used in § 4 and 5.

§ 4 serves as an introduction to § 5. We solve the Liouville equation satisfied by the limit

Wigner measure, and we motivate the definition of f̃ε through a suitable evolution law

that will be given in the next section. § 5 contains the main result of this work, that is, the

derivation of the appropriate evolution law for the semi-classical Wigner function, and

the definition of f̃ε.

In the final § 6, we study a simple two dimensional example, involving an elliptic umbilic

caustic. In this example, the exact fε is computed explicitly at any time t � 0. We show

how the projection formula (1.2) can be used on a caustic to give the precise amplitude,

in conjunction with suitable phase-space identities derived in Berry & Wright [5]. A

particular case of such an identity is recalled in Appendix C.

2 The semi-classical Wigner of a WKB function

We recall that the scaled Wigner transform of the function ψε(x) is defined by

Wε(x, k) =
1

(2π)N

∫
RN

e−ik·yψε
(
x +

εy

2

)
ψε

(
x − εy

2

)
dy (2.1)

=
1

(επ)N

∫
RN

e− 2i
ε
k·σψε(x + σ)ψε(x − σ) dσ.

Therefore the scaled Wigner transform of a WKB function ψε(x) = A(x)ei
S (x)
ε is given by

Wε(x, k) =
1

(επ)N

∫
RN

D(x, σ)ei
F(x,k;σ)

ε dσ, (2.2)
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with

D(x; σ) := A(x + σ)A(x − σ), (2.3)

F(x, k; σ) := S(x + σ) − S(x − σ) − 2k · σ. (2.4)

We will define the semi-classical Wigner function as an approximation of Wε given by

(2.2). To motivate the definition let us first make some comments. According to the

stationary phase method, the main contribution in Wε(x, k) will come from the stationary

points of F . That is, points σ0 for which ∇σF(x, k; σ0) = 0. We have that

∇σF = ∇xS(x + σ) + ∇xS(x − σ) − 2k.

The stationary points of F always come in pairs ±σ0(x, k), and as k → ∇S(x), there always

exist stationary points with σ0(x, k) → 0. In particular, when k = ∇S(x), then σ0 = 0 is

always a degenerate critical point. This, of course, is due to the fact that F(x, k; σ) is an

odd function of σ, that is, F(x, k; σ) = −F(x, k; −σ), and therefore all even derivatives at

σ = 0 are equal to zero (for any x, k).

From now on we call the set of points Λ = {(x,∇S(x))}, that is, the graph of k = ∇S(x),

the Lagrangian manifold-by noting that on Λ the 2-form dx ∧ dk vanishes identically.

Although the structure of the critical set of F can be quite complicated (even in the

case N = 1 [3, 8]), we expect that, modulo highly oscillatory terms that tend weakly to

zero as ε → 0, the main contribution to the asymptotics of Wε comes from points close

to the Lagrangian manifold, that is, k ≈ ∇S(x).

This is in agreement with the fact that as ε → 0 then Wε → W 0 = A2(x)δ(k − ∇S(x)), a

Dirac mass concentrated on the Lagrangian manifold. Also, let us consider the projection

identity (1.2):

|ψε(x)|2 =

∫
RN

Wε(x, k) dk =
1

(επ)N

∫
RN

∫
RN

D(x, σ)ei
F(x,k;σ) ε dσ dk. (2.5)

The main contribution in the calculation of the last integral (over RN
σ × RN

k ) will come

from the points (σ, k) at which ∇σ,kF = 0. These are easily is seen to be σ = 0, k= ∇S(x).

At each x these critical points are always non-degenerate, since the Hessian matrix

H(F) is nonsingular. Indeed for any i, j = 1, 2, . . . , N, we easily compute that at (x, σ =

0, k = ∇S(x)), Fki,kj = 0, Fσi,σj = 0, Fσi,kj = −2δij , and | detH(F)| = 22N . Thus in the calcu-

lation of |ψε(x)|, the main contribution also comes from the points near the Lagrangian

manifold.

Once we restrict attention to points k ≈ ∇S(x), it is natural to approximate D and F

by their Taylor expansion about σ = 0:

D(x; σ) = A2(x) + O(|σ|2),

and

F(x, k; σ) = 2(∇S(x) − k) · σ +
1

3

N∑
i,j,k=1

∂3S(x)

∂xi ∂xj ∂xk
σiσjσk + O(|σ|5). (2.6)
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If we keep only the linear term in the right hand side of (2.6) and replace D(x; σ) by A2(x)

in (2.2) we would “approximate” Wε(x, k) by

A2(x)

(επ)N

∫
RN

e− i
ε
2(k−∇S (x))·σ dσ = A2(x)δ(k − ∇S(x)) = W 0(x, k),

that is, the limit Wigner Dirac mass.

To obtain then a nontrivial approximation, we keep the cubic terms in (2.6), and define

the semi-classical Wigner function W̃ ε, as

W̃ ε(x, k) :=
A2(x)

(επ)N

∫
RN

e
i
ε
[−2(k−∇S (x))·σ+ 1

3

∑N
i,j,k=1

∂3S (x)
∂xi ∂xj ∂xk

σiσjσk]
dσ. (2.7)

It should be noted that the term “semi-classical” is not a standard term. For instance, in

the Physics literature, the scaled Wigner function Wε is sometimes called semi-classical

Wigner function whereas in Mathematics literature the term “semi-classical” sometimes

refers to the limit Wigner function W 0.

It is convenient at this point to introduce some notation that we will use throughout

the rest of this work. If we denote by cijk = Sxi,xj ,xk the derivatives of S , and use the

summation convention, the cubic form in (2.6) or (2.7), takes the form g(σ) = 1
3
cijkσiσjσk .

Since the tensor cijk is symmetric (the value of cijk is independent of the order of the

indices), we may define N symmetric matrices Ck , k = 1, 2 . . . N with elements cijk . The

cubic form then, can also be written in vector form as g(σ) = 1
3
σTCkσσk .

Concerning the phase integral appearing in (2.7), we set

PN(z,Ck) :=
1

(2π)N

∫
RN

ei[z
T σ+ 1

3 σTCkσσk] dσ. (2.8)

We also use the notation PN(z, cijk), or simply PN(z) when there is no confusion as to

what the coefficients cijk are.

Notice that for N = 1, if c� 0 is a constant, than P1(z, c) = |c|−1/3Ai(zc−1/3), where

Ai(z), is the standard Airy function. In particular P1(z, 1) = Ai(z). Also, if Ck ≡ 0, it

follows from (2.8) that

PN(z, 0) = δ(z). (2.9)

Using this notation, the semi-classical Wigner function (2.7) is written as

W̃ ε(x, k) =

(
2

ε
2
3

)N

A2(x)PN

(
− 2

ε
2
3

(k − ∇S(x)),
∂3S(x)

∂xi∂xj∂xk

)
. (2.10)

In the case N = 1 this takes the form

W̃ ε(x, k) =
2

ε
2
3

A2(x)

| S ′′′(x) | 1
3

Ai
(

− 2

ε
2
3

k − S ′(x)

(S ′′′(x))
1
3

)
, (2.11)

and we recover the Airy asymptotics of Filippas & Makrakis [8].
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A natural question concerned with the definition (2.7) is whether the integral PN is well

defined. This is addressed in appendix A; see Proposition A.1. We show there that PN is

well defined as a distribution whereas if

N∑
i=1

(σTCiσ)2 � 0, ∀σ ∈ RN \ {0}, (2.12)

then PN is a smooth function.

Failure of condition (2.12) is equivalent to the fact that there exists a unit vector ν ∈ RN

such that νTCiν = 0 for all i = 1, . . . N. Since Ci is the second derivative matrix of ∂S (x)
∂xi

this

is equivalent to the fact that for all i’s the surfaces ki =
∂S (x)

∂xi
have zero normal curvature in

the direction of ν ∈ RN
x . Hence we call a point x0 on the Lagrangian manifold k = ∇S(x)

a degenerate point if there exists a vector ν � 0 such that all i-components, (that is, all

surfaces ki = ∂S (x)
∂xi

, i = 1, . . . N) have zero normal curvature at the point x0 in direction

of ν .

Since the semi-classical Wigner function is defined via the phase integral PN (see (2.10)),

any property of PN yields the corresponding property for W̃ ε. For instance, from (A 6)

we have that

W̃ ε(x, k) → A2(x)δ(k − ∇S(x)), as ε → 0, (2.13)

whereas, if x is a non-degenerate point, it follows from (A 4) that∫
RN

W̃ ε(x, k) dk = A2(x). (2.14)

Near non-degenerate points the semi-classical Wigner is a smooth function that ap-

proximates the scaled Wigner Wε, as ε tends to zero. At degenerate points either the

semi-classical Wigner fails to approximate Wε, or else Wε itself is a distribution.

The reason that at a degenerate point the semi-classical Wigner fails to approximate

the scaled Wigner, is of course, due to the fact that by truncating the Taylor expansion

of F (cf. (2.6)) at the cubic order terms and discarding terms of higher order, we do

not always obtain nontrivial approximations of the phase F . This is easily seen in the

one dimensional case: When N = 1 then C1 = S ′′′(x) and failure of condition (2.12) is

equivalent to S ′′′(x) = 0. At such a point, keeping the cubic term in (2.6) is of no use

and the semi-classical Wigner coincides with the limit Wigner (a distribution). To obtain

a nontrivial approximation at a degenerate point one ought to keep more terms in (2.6).

Remark 2.1 To arrive at the definition of W̃ ε, we (i) threw away oscillatory terms that

tend to zero as ε → 0; these terms originate from nonzero (σ0 � 0) stationary points of

F and (ii) we replaced F by its third order Taylor expansion about σ = 0. Thus, with

the exception of highly oscillatory terms due to (i), W̃ ε approximates Wε locally, near

the Lagrangian manifold. The question of a uniform approximation of Wε, under the

generality we consider it here, seems to be an impossible task. We note however that

under the assumption that the Lagrangian manifold is globally convex, the oscillatory

terms of (i) are absent. In addition, the phase F in (2.4) can be identified with a suitable

symplectic area – without using Taylor expansion. One then obtains analytic expressions
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for the stationary phase approximation of Wε, in terms of suitable geometric quantities,

which are valid not only near the manifold but also in larger regions in phase space. We

refer to [3] for the case N = 1 and [18] for N = 2. Finally, it is clear that if A = constant

and S(x) is a cubic polynomial in x then W̃ ε ≡ Wε.

Remark 2.2 We note that by keeping two terms in the Taylor expansion (2.6), we have an

object (W̃ ε) that is “richer” than the limit Wigner W 0, in the sense that (i) is ε-dependent

and (ii) we can always send ε to zero to recover W 0; see (2.13). In fact, away from

degenerate points, W̃ ε provides the proper (PN) regularization of the limit Wigner Dirac

mass. At degenerate points, Wε has a structure more rich than W̃ ε can capture. As a

result, W̃ ε is not a good approximant of Wε in the neighborhood of these points, and is

unable to provide the proper regularization of W 0.

3 Phase space dynamics

Our analysis in this section is restricted to the single phase case, that is, in the time interval

0 � t � T with T < tc, where tc is the first time a caustic appears. If ψε(x, t) = A(x, t)e
i
ε
S (x,t),

is the WKB solution of (1.3), (1.4), the semi-classical Wigner W̃ ε of ψε at any time t ∈ [0, T ]

is given by (2.10). We recall that our objective is to obtain a direct evolution law for W̃ ε,

without having to go through the WKB solution. As a first step, we need to know how

the quantities k − ∇S(x, t) and Sxixjxk (x, t), that enter in the argument of PN , evolve with

time.

Let us first introduce some notation and recall some basic facts. We denote by (x, k) a

point in phase space and we use the special notation (q, p) for points of phase space at

time t = 0. The Hamiltonian flow moves a point (q, p) (at t = 0) to the point (x, k) (at

t > 0), along the bicharacteristics given by x = x̂(q, p, t) and k = k̂(q, p, t).

For the inverse bicharacteristics we use the notation q = q̂(x, k, t) and p = p̂(x, k, t). We

use the “bar” notation for the rays x(q, t) = x̂(q,∇S0(q), t) and similarly for the inverse

rays q(x, t) = q̂(x,∇S(x), t).

We recall that the Hamiltonian flow, for the problem at hand, is given by the ODE

system

d

dt
x̂(q, p, t) = k̂(q, p, t),

d

dt
k̂(q, p, t) = −∇xV (x̂(q, p, t)). (3.1)

The initial Lagrangian manifold Λ0 associated with ψε(q) = A0(q)e
i
ε
S0(q) is defined by

Λ0 = {(q, p) : p = ∇S0(q)}. This is a graph (from RN
q to RN

p ) in the sense that to

each q there corresponds a unique p. At time t the Hamiltonian flow moves Λ0 to

Λt = {(x, k) : p̂(x, k, t) = ∇S0(q̂(x, k, t))}. Under our assumption that we are in the single

phase case, Λt remains a graph and is alternatively given by Λt = {(x, k) : k = ∇xS(x, t)},
where S(x, t) is the (single valued) solution of the eikonal equation (1.6).

We are now in position to start our calculations. Let a(t) = a(q, p, t) = k̂(q, p, t) −
∇xS(x̂(q, p, t), t) with a(0) = p − ∇S0(q). We will derive and solve an ODE for a(t) along

the bicharacteristic (q, p) → (x, k), for (q, p) close to Λ0. For simplicity we will sometimes

use the notation x̂ and k̂ in the place of x̂(q, p, t) and k̂(q, p, t) respectively.
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(x,k)

(q,p)

A

B

D

C

0Λ

Λt

Figure 1. Evolution of k − ∇S (x, t). The point (q, p) moves to (x, k) = (x̂(t; q, p), k̂(t; q, p)). In the

figure are also shown the points A = (q,∇S0(q)), B = (x,∇S (x, t)), C = (x(q, t), ∇S (x(q, t), t) and

D = (q(x, t), ∇S0(q(x, t)).

Differentiating along the bicharacteristic (q, p) → (x, k) we get

d

dt
a(t) =

d

dt
k̂(q, p, t) − d

dt
∇xS(x̂(q, p, t), t)

= −∇V (x̂) − (∂t + k̂ · ∇)∇xS(x̂, t) (3.2)

= −∇V (x̂) − ∇xSt(x̂, t) − B(t) · k̂,

where B(t) is the symmetric N ×N matrix with elements bij(t) = Sxixj (x̂(q, p, t), t). Taking

the gradient of the eikonal equation (1.6), we find for S(x̂, t) = S(x̂(q, p, t), t)

∇xSt(x̂, t) = −B(t) · ∇xS(x̂, t) − ∇V (x̂). (3.3)

From (3.2) and (3.3) we see that

d

dt
a(t) = −B(t)a(t). (3.4)

If we denote by Φ(t) = {φij(t)}i,j=1,...,N the fundamental solution of (3.4) with Φ(0) = IN ,

then

a(t) = Φ(t)a(0). (3.5)

For future use we need to estimate detΦ(t). To this end we start with a well known

formula about the Jacobian of a ray x(q, t) (cf. AC in Figure 1); see (3.6) below. We

present a proof of this formula for completeness. Let x(q, t) = (xi(q, t), . . . , xN(q, t)). Then

∂xi(q, t)

∂t
= k̂i(q,∇S0(q), t) = Sxi (x(q, t), t).

Taking the ∂
∂qj

derivative of this we find

∂

∂t

(
∂xi
∂qj

)
=

N∑
k=1

Sxixk
∂xk
∂qj

.
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Setting X(t) for the matrix with elements Xij = ∂xi
∂qj

and B(t) for the symmetric matrix

with elements Sxixj (x(q, t), t), we can rewrite the above system as

d

dt
X(t) = B(t)X(t).

But J(q, t) = det X(t) is the Jacobian of the ray x(q, t), and by standard ODE theory (cf.

Coddington & Levinson [6]) we have that

J(q, t) = exp

{∫ t

0

tr B(τ)dτ

}
= exp

{∫ t

0

∆xS(x(q, τ), τ)dτ

}
. (3.6)

Since Φ(t) solves (3.4) we also have

detΦ(t) = exp

{
−

∫ t

0

tr B(τ)dτ

}
= exp

{
−

∫ t

0

∆xS(x̂(q, p, τ), τ)dτ

}
. (3.7)

To relate J(q, t) and detΦ(t) we will use the following approximation:

Sxixi (x̂(q, p, t), t) = Sxixi (x̂(q, S0(q), t), t) + O(t|a(0)|). (3.8)

If we accept this we easily arrive at

detΦ(t) = J−1(q, t)(1 + O(t2|a(0)|)). (3.9)

It remains to prove estimate (3.8). For easier comparison it is more convenient at this

point to use the bicharacteristic notation x̂(q, S0(q), t) instead of the ray notation. For p

close to S0(q) we have that

Sxixi(x̂(q, p, t), t) − Sxixi(x̂(q, S0(q), t), t) = O(|x̂(q, p, t) − x̂(q, S0(q), t)|). (3.10)

On the other hand,

|x̂(q, p, t) − x̂(q, S0(q), t)| = O(|∇px̂(q, S0(q), t)||p − S0(q)|). (3.11)

From the Hamiltonian system it follows that

d

dt
∇px̂(q, p, t) = ∇pk̂(q, p, t), with ∇px̂(q, p, 0) = 0, ∇pk̂(q, p, 0) = IN.

Hence, for t small we have that |∇px̂(q, p, t)| = O(t). Clearly, this estimate is also valid in

the (compact) time interval 0 � t � T . Recalling that a(0) = p − ∇S0(q) we then have

from (3.11) that

|x̂(q, p, t) − x̂(q, S0(q), t)| = O(t|a(0)|),

and (3.8) follows from (3.11).

We next derive ODEs for the evolution of the third derivatives. Let

cijk(t) = Sxixjxk (x̂(q, p, t), t),
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with cijk(0) = S0,qiqjqk (q). Differentiating along the bicharacteristic (q, p) → (x, k) we get

for S = S(x̂(q, p, t), t)

d

dt
cijk(t) = (∂t + k̂ · ∇x)Sxixjxk = Sxixjxk ,t + k̂lSxixjxkxl . (3.12)

Taking the ∂3

∂xi∂xj∂xk
– derivative of the eikonal (1.6) we get for S = S(x̂, t) = S(x̂(q, p, t), t)

Sxixjxk ,t = −(SxlxiSxlxjxk + Sxlxj Sxlxixk + SxlxkSxlxixj ) − Sxl Sxlxixjxk − Vxixjxk ,

where Vxixjxk = Vxixjxk (x̂(q, p, t), t). Replacing Sxixjxk ,t in (3.12) and using our notation we

end up with

d

dt
cijk = −(blicljk + bljclik + blkclij) + a(t) · ∇xSxixjxk − Vxixjxk

= −(blicljk + bljclik + blkclij) − Vxixjxk + O(t|a(t)|). (3.13)

Let us denote by Ck(t) and Vk(t), k = 1, 2, . . . , N the symmetric N × N matrices with

elements cijk(t) and Vxixjxk i, j = 1, 2, . . . , N respectively. We then write the equation (3.13)

in matrix form as (k, l = 1, 2, . . . N)

d

dt
Ck(t) = −B(t)Ck(t) − Ck(t)B(t) − bkl(t)Cl(t) − Vk(t) + O(t|a(0)|). (3.14)

By the results of Appendix B, the solution of (3.14) is given by (k, l = 1, 2, . . . N)

Ck(t) = Φ(t)
[
Cl(0) + Ul(t) + O(t|a(0)|)

]
ΦT (t)φkl(t), (3.15)

where Uk(t) solves

φkl
d

dt
Ul = −Φ−1VkΦ

−T , Uk(0) = 0, k, l = 1, 2, . . . , N. (3.16)

We may write (3.15) as

Ck(t) + O(t|a(0)|) = Φ(t) [Cl(0) + Ul(t)]Φ
T (t)φkl(t). (3.17)

Remark 3.1 We recall that the calculation of B(t), Φ(t), Ck(t) and U(t) have been done

along the bicharacteristic (q, p) → (x, k). To keep track of the bicharacteristic, when

needed, we will use the notation B(q, p, t), Φ(q, p, t), etc.

Remark 3.2 Let us use the “bar” notation when the previous quantities are calculated

along rays. For instance, cijk(t) = Sxixjxk (x̂(q,∇S0(q), t), t) = Sxixjxk (x(q, t), t), and similarly

for Vxixjxk , Ck , Vk etc. Then, the equation for Ck is the same as (3.14) without the error

terms and in particular, it follows from (3.15) that

Ck(t) = Φ(t)
[
Cl(0) + Ul(t))

]
Φ
T
(t)φkl(t); (3.18)
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here the matrix Φ(t) is the fundamental solution of the equation

d

dt
a(t) = −B(t)a(t). (3.19)

Also, working as above, we can derive the ODE satisfied by B(t):

d

dt
B(t) = −B

2
(t) − V(t), (3.20)

where V = Vxixj is the second derivative matrix of V .

4 Evolution of the limit Wigner function

Here we will use the phase-space formulas derived above, to solve the Liouville equation

for the limit Wigner function (cf. (1.14)).

In the sequel we will write q̂ instead of q̂(x, k, t), and p̂ instead of p̂(x, k, t). We also set

â(t) := k(q̂, p̂, t) − ∇xS(x(q̂, p̂, t), t) = k − ∇xS(x, t); in particular â(0) = p̂ − ∇S0(q̂). We note

that â and a (defined in section 3) represent the same quantity; â is a function of (x, k, t)

and a is a function of (q, p, t). Similarly, we set Φ̂(t) := Φ(q̂, p̂, t).

Solving (1.14) by characteristics we get

f0(x, k, t) = f0
0(q̂(t; x, k), p̂(t; x, k))

= A2
0(q̂)δ(p̂ − ∇S0(q̂)) (4.1)

= A2
0(q̂)δ(â(0)).

When restricted in the single phase region [0, T ], T < tc, we use (3.5), (3.9) and (1.9) to

obtain

A2
0(q̂)δ(â(0)) = A2

0(q̂)δ(Φ̂−1(t)â(t))

= A2
0(q̂)| det Φ̂(t)|δ(â(t))

(4.2)

=
A2

0(q̂)

J(q̂, t)
δ(â(t))

= A2(x, t)δ(k − ∇Sx(x, t)),

recovering the well known fact that f0 coincides with the limit Wigner of the WKB

solution.

Formula (4.1) is valid for any t � 0 even in the multiphase case. As noted in [8], at a

caustic point (xc, tc) the quantity q̂(xc, k, tc) − ∇S0(q̂(xc, k, tc)) ceases to have simple roots

with respect to k and the composition of the Dirac mass with q̂(xc, k, t) − ∇S0(q̂(xc, k, tc))

is not well defined as a measure in RN
k , not even as a distribution in RN

k [15, p. 547].

This means that at the point (xc, tc), the integral
∫

RN
k
f0(xc, k, tc)dk is meaningless and

consequently, at such a point, the projection formula (1.17) is inapplicable.
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To motivate the definition of f̃ε that will be given in the next section, let us make some

observations about f0. Suppose in the Taylor expansion (2.6) we keep only the linear term,

in which case we “approximate” Wε by the limit Wigner W 0. Thus – through comparison

with the scaled Wigner of the WKB solution – we would end up with the well known

formula

W 0(x, k, t) = A(x, t)δ(k − ∇Sx(x, t)), (4.3)

valid for any t � 0, with A(x, t) and S(x, t) as given by the WKB method. Suppose now

that we are unaware of the fact that W 0 solves a Liouville equation in phase space, and

we try to finger out what is the evolution law of W 0. By comparing W 0 at time t > 0

and at t = 0, using relations (3.5), (3.9) and (1.9) one would immediately see that W 0 is

transported by the Hamiltonian flow – by the same calculations as in (4.1), (4.2), but done

in reverse order. Hence, we can now “define” f0 by applying the correct evolution law

(transport) on W 0
0 , that is, f0(x, k, t) = W 0

0 (q̂(x, k, t), p̂(x, k, t)), and this of course, leads to

the correct definition.

In the next section we will define f̃ε by applying a suitable evolution law to W̃ ε
0 (q, p).

The evolution law will follow by comparing W̃ ε at time t > 0 and t = 0, using the phase

space evolution formulas of § 3 as well as (1.9) and (A 12).

5 Evolution of the semi-classical Wigner function

Here we will derive the evolution law for the semi-classical Wigner function. We will

use the notation of the previous section, that is, q̂, p̂, â(t) and Φ̂(t). In addition we set

Ĉk(t) := Ck(q̂, p̂, t) = Ck(q̂(x, k, t), p̂(x, k, t), t) and similarly for V̂k(t) and Ûk(t).

Our starting point is the semi-classical Wigner of the WKB solution at time t, that is,

W̃ ε(x, k, t) =
(
2ε− 2

3

)N
A2(x, t)PN

(
−2ε− 2

3 â(t), Ĉk(t)
)
.

Recalling (3.5) and (3.15) we have that

â(t) = Φ̂(t)â(0), Ĉk(t) = Φ̂(t)[Ĉl(0) + Ûl(t) + O(t|â(0)|]Φ̂T (t)φ̂kl(t).

Using the change of variables formula (cf. (A 8), (A 9) with T = Φ̂T (t)) first and then the

convolution formula (cf. (A 12)), with η = −2ε− 2
3 , z = p, α = ∇S0(q̂), we get

| det Φ̂(t)| PN
(

−2ε− 2
3 â(t), Ĉk(t)

)
= PN

(
−2ε− 2

3 â(0), Ĉk(0) + Ûk(t) + O(t|â(0)|
)

= PN

(
−2ε− 2

3 (p̂ − ∇S0(q̂)), Ĉk(0) + Ûk(t) + O(t|â(0)|
)

= PN

(
−2ε− 2

3 (p − ∇S0(q̂)), Ĉk(0)
)

∗p PN

(
−2ε− 2

3 p, Ûk(t) + O(t|â(0)|)
) ∣∣∣

p=p̂

(
2ε− 2

3

)N
.
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From this and (3.9) it follows that

W̃ ε(x, k, t)

=
(
2ε− 2

3

)N
A2(x, t)J(q̂, t)(1 + O(t2|â(0)|)) ×

PN

(
−2ε− 2

3 (p − ∇S0(q̂)), Ĉk(0)
)

∗p PN

(
−2ε− 2

3 p, Ûk(t) + O(t|â(0)|)
) ∣∣∣

p=p̂

(
2ε− 2

3

)N
=

(
2ε− 2

3

)N
A2

0(q̂)PN

(
−2ε− 2

3 (p − ∇S0(q̂)), Ĉk(0)
)

∗p

∗pPN

(
−2ε− 2

3 p, Ûk(t) + O(t|â(0)|)
) ∣∣∣

p=p̂
(1 + O(t2|â(0)|))

(
2ε− 2

3

)N
= W̃ ε

0 (q̂, p) ∗p PN

(
−2ε− 2

3 p, Ûk(t) + O(t|â(0)|)
) ∣∣∣

p=p̂
(1 + O(t2|â(0)|))

(
2ε− 2

3

)N
.

Thus, with the exception of the error terms, W̃ ε(x, k, t) is equal to the convolution of

W̃ ε
0 (q̂, p) with a suitable phase integral, the convolution being evaluated at the point p = p̂.

Omitting the error terms in the last line of the calculations above, we set

G̃ε(p, Ûk(t)) :=
(
2ε− 2

3

)N
PN(−2ε− 2

3 p, Ûk(t)). (5.1)

We then define f̃ε(x, k, t) as

f̃ε(x, k, t) := G̃ε(p, Ûk(t)) ∗p W̃
ε
0 (q̂, p)

∣∣∣
p=p̂

= G̃ε(p, Ûk(t)) ∗p f̃
ε
0(q̂, p)

∣∣∣
p=p̂

. (5.2)

We note that f̃ε(x, k, t) as defined by (5.2) is in agreement with W̃ ε(x, k, t), for |â(0)|
small (cf. (A 7)), that is, locally near the Lagrangian manifold.

Let us recall that Ûk(t) is a known quantity, in the sense that one has first to solve

the ODE (3.2) to get Φ̂(t) and then solve the ODE (3.16) to get Ûk(t). Both ODE’s are

solved along the bicharacteristics (q̂, p̂) → (x, k). It follows easily that G̃ε depends on the

potential V (x) and the initial phase S0, but is independent of the initial amplitude A0.

The evolved semi-classical Wigner function as defined by (5.2) is in fact a PN–phase

integral, given by

f̃ε(x, k, t) =
(
2ε− 2

3

)N
A2

0(q̂)PN

(
−2ε− 2

3 â(0), Ĉk(0) + Ûk(t)
)
, (5.3)

and it follows easily that

f̃ε(x, k, t) → f0(x, k, t) = A2(x, t)δ(k − ∇xS(x, t)), as ε → 0.

We also note that f̃ε(x, k, t) is a smooth function iff the point (x,∇S(x, t)) on Λt is a

non-degenerate point. In particular, for any t ∈ [0, T ], f̃ε provides a PN-regularization of

f0 away from degenerate points.

It is interesting to notice that according to (5.2), the evolved semi-classical Wigner

function f̃ε is not only transported by the Hamiltonian flow but also dispersed in the

k-direction, through its convolution with the kernel G̃ε. Such a behavior is in complete

agreement with the transport-dispersive character of the Wigner equation (cf. (1.12)).
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Remark 5.1 (Non essential potentials). Let us see an interesting special case. We say that

the potential is nonessential if Vk ≡ 0, or equivalently, V (x) is either zero, or linear in

x or quadratic in x. In this case the (full) Wigner equation is again a simple transport

equation –it coincides with the Liouville equation satisfied by the limit Wigner f0. Hence,

the exact solution is given by fε(x, k, t) = fε0(q̂, p̂).

Let us see how f̃ε behaves. When Vk ≡ 0, it follows from (3.16) that Ûk(t) ≡ 0.

Therefore, from (5.1) and (2.9) we have that G̃ε(p, Ûk(t)) = G̃ε(p, 0) = δ(p). Hence, (5.2)

becomes

f̃ε(x, k, t) = δ(p) ∗p W̃
ε
0 (q̂, p)

∣∣∣
p=p̂

= W̃ ε
0 (q̂, p̂) = f̃ε0(q̂, p̂).

That is, the evolution law for f̃ε coincides with that of fε. In addition, if A0 = constant

and the initial phase S0(q) is a cubic polynomial in q, then we easily see that f̃ε(x, k, t) ≡
fε(x, k, t).

For nonessential potentials, non-degenerate points of the initial Lagrangian manifold

are moved by the Hamiltonian flow to non-degenerate points. Indeed, at a non-degenerate

point (q,∇S0(q)) on Λ0 we have that
∑N

i=1(σ
TCi(0)σ)2 = 0 iff σ = 0. At time t this point

moves to the point (x(t; q), ∇S(x((t; q), t) on Λt and the third derivative matrices at this

point are given by (all quantities evaluated along the ray x(t; q))

Ck(t) = Φ(t)Cl(0)Φ
T
(t)φkl(t).

The result then follows by the argument of Remark 1 of Appendix A.1 (with T = Φ
T
(t)).

Consequently, if the semi-classical Wigner function is originally a smooth function in

a neighborhood of a point of the Lagrangian manifold, it will stay a smooth function at

later times.

Remark 5.2 (The ε = 0 limit). Let us take the limit ε → 0 in (5.2). Then W̃ ε
0 (q̂, p̂) → f0

0(q̂, p̂),

whereas by (A 6), G̃ε(p, Ûk(t)) → δ(p), as ε → 0. Consequently, as ε → 0, we have that

f̃ε(x, k, t) = G̃ε(p, Ûk(t)) ∗p W̃
ε
0 (q̂, p)

∣∣∣
p=p̂

→ δ(p) ∗p f
0
0(q̂, p)

∣∣∣
p=p̂

= W 0
0 (q̂, p̂).

That is, in the limit ε = 0, the dispersion mechanism disappears and we recover the

Liouville equation satisfied by the limit Wigner f0.

Remark 5.3 (Approaching a caustic). In order to arrive at the definition (5.2) we required

that the evolved semi-classical Wigner be in agreement W̃ ε. In particular all the underlying

analysis was restricted in the time interval (0, T ), T < tc. Once however we define f̃ε

by (5.2), then f̃ε is well defined even at a caustic point (xc, tc), if this point is a non-

degenerate point. This is best seen in the case of nonessential potentials. At such a point,

the integration
∫

RN
k
f̃ε(xc, k, tc)dk is now meaningful.

6 A 2D example

To get some insight about the multiphase case, we will present an elementary but exact

two-dimensional example of an elliptic umbilic caustic that evolves naturally from suitable



18 S. Filippas and G. N. Makrakis

initial data. We will consider equation (1.3) with V (x) ≡ 0, and suitable WKB initial data.

We will compute |ψε(x, t)|, at any point (x, t) including the caustic points, by first finding

fε(x, k, t) and then using the projection formula (1.2). The natural way to use (1.2) is in

conjunction with suitable phase-space projection identities derived in [5]. We start with

some general facts.

6.1 Lagrangian manifold–caustic

The initial manifold Λ0 is the graph of a function from R2
q to R2

p and is given by

Λ0 = {(q, p) : p = ∇S0(q)}. At time t the phase flow moves Λ0 to Λt = {(x, k) : p̂(x, k, t) =

∇qS0(q̂(x, k, t))}. Whereas Λ0 projects onto R2
q in a one-to-one way, this is not the case

with Λt, t > 0, for which there will be points of Λt, where the projection (x, k) → x is

locally not invertible. The projection of these points onto R2
x × Rt defines the caustic in

the physical variables (x1, x2, t).

We next derive the equations describing the caustic. The points of Λt which project

onto the caustic should satisfy:

F1(x, k, t) := p̂1(x, k, t) − ∂

∂q1
S0( q̂(x, k, t)) = 0,

F2(x, k, t) := p̂2(x, k, t) − ∂

∂q2
S0(q̂(x, k, t)) = 0,

as well as

(∂F1/∂k1)(∂F2/∂k2) − (∂F1/∂k2)(∂F2/∂k1) = 0. (6.1)

These are three equations involving five variables (k1, k2, x1, x2, t). Considering k1, k2 as

parameters, they describe the caustic as a two dimensional surface in (x1, x2, t).

6.2 The zero potential

In the special case V (x) = 0 the inverse bicharacteristics are given by:

q = q̂(x, k, t) = x − kt, p = p̂(x, k, t) = k. (6.2)

In this simple case it is convenient for subsequent calculations, to write the equations with

respect to (q1, q2, x1, x2, t) instead of (k1, k2, x1, x2, t). To this end we note that by the chain

rule we have

∂Fi
∂kj

=
∂p̂i
∂kj

− ∂2S0

∂qi ∂q1

∂q̂1

∂kj
− ∂2S0

∂qi ∂q2

∂q̂2

∂kj
, i, j = 1, 2. (6.3)

In addition,

ki =
(xi − qi)

t
,

∂p̂i
∂kj

= δij ,
∂q̂i
∂kj

= −tδij , i, j = 1, 2. (6.4)
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The equations describing the caustic are then given by:

x1 − q1

t
− ∂

∂q1
S0(q1, q2) = 0,

x2 − q2

t
− ∂

∂q2
S0(q1, q2) = 0, (6.5)(

1 + t
∂2S0

∂2q1

)(
1 + t

∂2S0

∂2q2

)
− t2

(
∂2S0

∂q1 ∂q2

)2

= 0.

Considering q1, q2 as parameters, the above three equations describe the caustic as a two

dimensional surface in (x1, x2, t).

6.3 The elliptic umbilic caustic

We choose the WKB initial data ψ0(q) = A0(q)e
i
ε
S0(q), with A0(q) ≡ 1 and

S0(q1, q2) =
1

3
q3

1 − q1q
2
2 − a(q2

1 + q2
2), a > 0. (6.6)

Setting

u1 :=
x1

t
, u2 :=

x2

t
, v :=

1

2t
− a, (6.7)

we easily compute from (6.5) that the equations of the caustic are

u1 = q2
1 − q2

2 + 2q1v

u2 = −2q1q2 + 2q2v (6.8)

v2 = q2
1 + q2

2 .

For v > 0, we set q1 = v cos θ, q2 = v sin θ. We then compute

u1 = v2(cos 2θ + 2 cos θ)

u2 = −v2(sin 2θ − 2 sin θ).

For fixed v (that is, fixed t) this describes a hypocycloid with three cusps. A similar

analysis shows that the picture remains the same for v < 0. Returning to (x1, x2, t) space

we obtain the elliptic umbilic caustic with a focus at the point (x1, x2, t) = (0, 0, 1
2a

).

The t=constant sections of the elliptic umbilic caustic are shown in Figure 2. The

coordinates of the three cusps are easily found to be

(x1, x2)A =

(
3t

(
1

2t
− a

)2

, 0

)

(x1, x2)B =

(
−3t

2

(
1

2t
− a

)2

,
3
√

3t

2

(
1

2t
− a

)2
)

(x1, x2)C =

(
−3t

2

(
1

2t
− a

)2

,−3
√

3t

2

(
1

2t
− a

)2
)
.
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x

A

B

C

x

2

1

Figure 2. t= constant sections of the elliptic umbilic caustic.

All three points move to infinity as t tends to either 0 or infinity. Also, at t = 1/2a, the

hypocycloid reduces to a point (the origin) which is called the focus of the caustic.

6.4 Evolution of the scaled Wigner function (fε) and the wave field (ψε)

The initial Wigner is given by

fε0(q, p) =
1

(επ)2

∫
R2

e
i
ε
F(q,p;σ) dσ, (6.9)

with

F(q, p; σ) = −2(p − ∇S0(q)) · σ +
1

3

2∑
i,j,k=1

S0,qiqjqkσiσjσk.

The Wigner function at any time t is given by

fε(x, k, t) = fε0(x − kt, k) = fε0

(
q,

x − q

t

)
,

(
k =

x − q

t

)
.

We note that in this simple example, fε(x, k, t) = f̃ε(x, k, t) (as defined in § 5). Now, a

straightforward calculation shows that for S0 as in (6.6)

F
(
q,

x − q

t
; σ

)
= −2ẑ · σ +

1

3
(2σ3

1 − 6σ1σ
2
2),

where ẑ = (ẑ1, ẑ2)

ẑ1(u, v; q) := u1 − 2vq1 + q2
2 − q2

1 ,

ẑ2(u, v; q) := u2 − 2vq2 + 2q1q2,

and (u, v) as defined by (6.7).

Throughout this section the phase integral P2 is given by

P2(z) =
1

(2π)2

∫
R2

ei[z·σ+ 1
3 (2σ3

1−6σ1σ
2
2 )] dσ.
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We also define a new phase integral P̃2 by

P̃2(z, w) :=
1

(2π)2

∫
R2

ei[z·σ+w|σ|2+ 1
3 (2σ3

1−6σ1σ
2
2 )] dσ. (6.10)

Notice that P̃2(z, 0) = P2(z). Moreover, for ẑ as above and γ > 0, the two phase integrals

are related by the following “projection identity” (see Appendix C):∫
R2

P2(−γẑ(u, v; q)) dq =
21/34π2

γ
|P̃2(−2− 2

3 γu, 21/6γ1/2v)|2. (6.11)

Using our notation the Wigner function at any time t is given by

fε(x, k, t) =
1

(επ)2

∫
R2

e
i
ε
(−2ẑ1σ1−2ẑ2σ2+

1
3 (2σ3

1−6σ1σ
2
2 ) dσ

= (2ε− 2
3 )2P2(−2ε− 2

3 ẑ(u, v; q)).

On the other hand, the modulus of the amplitude is given by

|ψε(x, t)|2 =

∫
R2

fε(x, k, t)dk(
k =

x − q

t

)
:=

1

t2

∫
R2

fε0

(
q,

x − q

t

)
dq

(γ = 2ε− 2
3 ) :=

γ2

t2

∫
R2

P2(−γẑ(u, v; q)) dq

(by (6.11)) :=
2

1
3 4π2γ

t2
|P̃2(−2− 2

3 γu, 21/6γ1/2v)|2.

Recalling the definition of P̃2 (cf. (6.10)), and changing variables by σi = (2ε)−1/3ξi,

(i = 1, 2), we have that

|ψε(x, t)|2 =
1

(2πεt)2

∣∣∣∣∫
R2

e
i
ε
( 1

3 ξ
3
1−ξ1ξ

2
2+v(ξ2

1+ξ
2
2 )−u1ξ1−u2ξ2)dξ1dξ2

∣∣∣∣2 , (6.12)

where u = x
t

and v = 1
2t

−a. This formula is valid at any point including the points on the

caustic. For instance, at the focus of the caustic (x1, x2, t) = (0, 0, 1
2a

) we just set in (6.12)

u1 = u2 = v = 0. In particular, |ψε(0, 0, 1
2a

)| = O(ε−1/3).

7 Conclusion

We have introduced the semiclassical Wigner function f̃ε as a formal approximation

of the scaled Wigner trasform of the WKB solution to the problem (1.3)–(1.4). This

approximation is valid near the manifold k = ∇xS(x, t). f̃ε is an object that is “richer”

than the limit Wigner function f0 which is a Dirac mass concentrated on k = ∇xS(x, t).

In particular, f̃ε is an ε-dependent oscillatory integral that tends to f0 as ε tends to zero.

Moreover, it obeys an evolution law which is in agreement with the transport-dispersive

character of the Wigner equation (1.12)–(1.13).
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If (xc, tc) is a caustic point, the restriction of f0 at this point, that is f0(xc, k, tc), is not a

well defined distribution in RN
k , and as a consequence the amplitude at (xc, tc) cannot be

computed via the projection identity (1.17). On the contrary, f̃ε(xc, k, tc) is a well defined

function in RN
k , and therefore the integral of f̃ε with respect to k is meaningful and is

expected to approximate the (ε-dependent) exact amplitude, at least on simple caustics.

However, an approximation result in this direction is still missing.

More generally, the asymptotic nearness of f̃ε and fε is an open question. The dif-

ficulty in settling these questions stems from the fact that one deals with complicated

multidimensional oscillatory integrals.
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Appendix A The phase integral PN

A.1 Regularity of PN

Here we will make some remarks concerning the regularity of the phase integral PN
defined in (2.8). We recall that

PN(z,Ck) =
1

(2π)N

∫
RN

eiφ(z,σ) dσ, (A 1)

with

φ(z, σ) := zTσ + g(σ), g(σ) :=
1

3
σTCkσσk.

We note that PN can be thought of as the Fourier transform of the C∞(RN) function eig(σ)

and therefore is always well defined as a distribution. Also, since g(σ) depends smoothly

on the coefficients Ck , the distribution PN also depends smoothly on Ck . We next find

conditions under which PN is a C∞(RN) function.

We will follow closely the arguments of Hormander [12, §1.2], to which we refer for

more details. Let us denote by R = R(z), C = C(z) two positive constants that may

depend on z. We then define the open set

Zσ := {z ∈ RN : there exist R, C s.t. for |σ| > R, |∇σφ(z, σ)| � C|σ|2}.

For z ∈ Zσ it follows easily that (i) the function σ → φ(z, σ) has no critical points for

|σ| > R and (ii) the quantity ψ(z, σ) = |∇σφ(z, σ)|−2 is a symbol with ψ ∈ S−4(RN), for

large |σ|; see Hormander [12, p. 83] for the definition of the symbol. Regarding then z as

a parameter in the definition of PN , we can use similar arguments as in Hormander [12],

to show that PN(z) ∈ C∞(Zσ).
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Let us see in particular the analogue of Lemma 1.2.1 in Hormander [12, p. 89]. The

essential difference between this Lemma and our case is the fact that in [12] the phase

is a symbol of order 1 whereas in our case the phase, due to the presence of the cubic

terms, is a symbol of order 3.

Let U be a bounded open subset of Zσ . By the definition of Zσ there exists an RU such

that ∇σφ(z, σ) � 0, for |σ| > RU and z ∈ U. Let χ(σ) ∈ C∞
0 (RN) be a smooth cutoff such

that χ = 1, for |σ| < RU . Regarding z ∈ U as a parameter, and starting from the identity

− i(1 − χ)

|∇σφ|2 ∇σφ · ∇σ(eiφ) + χeiφ = eiφ,

it is easy to see that the analogue of the operator L is given by

L = a · ∇σ + c,

with

a = (a1, . . . , aN) =
i(1 − χ)

|∇σφ|2 ∇σφ, c = χ+ divσa.

For z ∈ Zσ , we have that |∇σφ|−2 ∈ S−4(RN), for large |σ| and it follows that ai ∈ S−2(RN),

i = 1, . . . N, and c ∈ S−3(RN) for large |σ|. The key observation here is that the coefficients

ai and c enjoy better decaying properties than in Lemma 1.2.1 in Hormander [12] – where

ai ∈ S0(RN) and c ∈ S−1(RN). This difference by 2, in the order of the symbols of the

coefficients, is precisely what is needed to make up for the difference in the phases.

With this in mind, one can now argue exactly as in Hormander [12, pp. 89–90], to

conclude that PN(z) ∈ C∞(U). Since U is an arbitrary subset of Zσ , it follows that

PN(z) ∈ C∞(Zσ).

We next show that if

|∇σg(σ)|2 =

N∑
i=1

(σTCiσ)2 � 0, ∀σ ∈ RN \ {0}, (A 2)

then Zσ = RN . Indeed, if C0 = min|σ|=1 |∇σg(σ)| > 0, by homogeneity we have that

|∇σg(σ)| > C0|σ|2, for σ � 0. On the other hand for any (fixed) z ∈ RN we have

|∇σφ(z, σ)| =

N∑
i=1

|zi + σTCiσ| �
N∑
i=1

|σTCiσ| −
N∑
i=1

|zi| � C0|σ|2 −
√
N|z| �

C0

2
|σ|2,

for |σ| large enough. Hence z ∈ Zσ , and consequently Zσ = RN .

We collect these observations in the following.

Proposition A.1 The phase integral PN in (A 1) is always well defined as a distribution

and depends smoothly on the coefficients Ck . If condition (A 2) is satisfied then PN(z) is a

C∞(RN) function.
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We next present some examples. For N = 1, g(σ) = 1
3
cσ3 and condition (A 2) is satisfied

iff c� 0, in which case P1(z) is the Airy function, whereas for c = 0, P1(z) = δ(z).

For N = 2 any cubic form can be put, by a linear transformation, into one of the

following five (nonequivalent) forms: (a) the hyperbolic case: g(σ) = 1
3
(σ3

1 + σ3
2), (b) the

elliptic case: g(σ) = 1
3
σ3

1 − σ1σ
2
2 (c) the parabolic case: g(σ) = σ1σ

2
2 , (d) g(σ) = 1

3
σ3

1 , (e)

g(σ) = 0; e.g. see Guillemin & Sternberg [10, Chapt. 7, Prop. 7.2]. Cases (a) and (b)

are easily seen to satisfy condition (A 2) and therefore the corresponding P2 integrals are

C∞(R2). The other three cases fail to satisfy condition (A 2). It is easy to check that for

case (d) P2(z1, z2) = Ai(z1)δ(z2) whereas in case (e) P2(z1, z2) = δ(z1, z2). In case (c) the

corresponding integral can also be explicitly computed and is given by

P2(z1, z2) =

{
cos(z2

√
|z1|)

4π2|z1| , z1 < 0,

0, z1 > 0,
(A 3)

which is a C∞ function in R2 \ {z1 = 0} (cf. Ben-Artzi et al. [1] and Fedoryuk [7]).

In all these examples PN(z), N = 1, 2 is in fact a signed measure with∫
RN

PN(z) dz = 1.

This is easily checked in all cases above, using the explicit forms of PN .

We finally note that 2D oscillatory integrals with cubic phase have been studied in

Fedoryuk [7] for analyzing Green functions for ultrahyperbolic equations, and recently

in Ben-Artzi et al. [1] for deriving dispersion estimates for nonlinear Schrodinger-type

systems.

A.2 Some properties of PN

To avoid dealing with distributions we suppose that condition (A 2) is satisfied, so that

PN is a smooth function. The general case where PN is a distribution is discussed in

Remark 2 at the end of this section.

At first we note that ∫
RN

PN(z,Ck) dz = 1. (A 4)

At the formal level this follows by doing first the dz-integration and then the dσ-integration

and using the fact

1

(2π)N

∫
RN

eiz·σ dz = δ(σ). (A 5)

This can be made rigorous as follows. Let χ(σ) ∈ C∞
0 (B) be a smooth cutoff function

supported in the unit ball B and such that
∫

RN χ(σ) dσ = 1. We set χε(σ) = ε−Nχ(σ/ε).

and denote by χ̌ε(z) the inverse Fourier transform of χε(σ), that is

χε(σ) =
1

(2π)N

∫
RN

eiz·σ χ̌ε(z) dz.
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We note that χε(σ) → δ(σ) as ε → 0, whereas the function χ̌ε(z) decays rapidly at infinity

and χ̌ε(z) → 1, uniformly on compact sets, as ε → 0. We then have that∫
RN

PN(z)χ̌ε(z) dz =
1

(2π)N

∫
(RN )2

eiz·σ χ̌ε(z)e
ig(σ) dz dσ =

∫
RN

χε(σ)eig(σ) dσ,

and the result follows by sending ε to zero.

We next have that

1

ηN
PN

(
z

η
,Ck

)
→ δ(z), as η → 0. (A 6)

To prove this we will show that if φ(z) is a C∞
0 (RN) function then

1

(2π)N
1

ηN

∫
(RN )2

ei
z
η

·σeig(σ)φ(z) dz dσ → φ(0), η → 0.

The left-hand side is easily seen to be equal to

1

ηN

∫
RN

φ̂(σ/η)eig(σ) dσ =

∫
RN

φ̂(x)eig(ηx) dx = φ(0) +

∫
RN

φ̂(x)[eig(ηx) − 1] dx,

where φ̂ denotes the Fourier transform of φ. Concerning the last integral we have that∫
RN

φ̂(x)[eig(ηx) − 1] dx � C

∫
|x|<R

|eig(ηx) − 1| dx + 2

∫
|x|>R

|φ̂(x)| dx =: A+ B.

The function φ̂(x) decays at infinity faster than any power of |x| and therefore we can

make the term B smaller than, say, ε/2 by taking R large enough. We then take η small

enough to make the term A smaller than ε/2 and the result follows.

Since PN depends smoothly on the coefficients Ck , we have that if Cη
k → C0

k as η → 0,

then also

PN(z,Cη
k) → PN(z,C0

k), as η → 0. (A 7)

We next show a change of variables formula. If T is a nonsingular N ×N matrix and

z̃ = TT z, C̃k = TTClTTlk, k, l = 1, . . . , N, (A 8)

we then have that

PN(z,Ck) = | det T| PN(z̃, C̃k). (A 9)

To prove this we notice that by the linear change of variables σ = Tρ in the integral (2.8),

the value of the PN stays the same. We then compute

zTσ +
1

3
σTCkσσk = (TT z)ρ +

1

3
ρT (TTClTTlk)ρρk,= z̃Tρ +

1

3
ρT C̃kρρk.

Since dσ = | det T| dρ, (A 9) follows from (A 1).
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Let us note that the role of z in W̃ ε is played by (k − ∇xS(x)); cf. (2.10).

Then z̃ = TT z, means k̃ = TTk and ∇x̃S(x̃) = TT∇xS(x)). The last equality holds if

x̃ = T−1x. Indeed, if T = {Tij} then Sx̃i(x̃) = Sxj (x)Tji. On the other hand by the chain

rule Sx̃i(x̃) = Sxj (x)
∂xj
∂x̃i

. Hence Tji =
∂xj
∂x̃i

, and xj = Tjix̃i, or x = Tx̃.

The same transformation (x = Tx̃) yields the correct transformation of the third

derivatives. Indeed, since Sx̃i(x̃) = Sxl (x)Tli, then

(C̃k)ij = c̃ijk = Sx̃i,x̃j ,x̃k (x̃) = Sxl ,xm,xn(x)TliTmjTnk = clmnTliTmjTnk

= (TT )il(CnT )ljTnk = (TTCnT)ijTnk,

which is the same as (A 8). Thus, at the level of our original variables (x, k), the trans-

formation (A 8) is equivalent to (x̃, k̃) = (T−1x,TTk).

We next derive a “convolution formula”. This is essentially the well known fact that the

Fourier transform of a convolution is the product of the Fourier transforms. Our starting

point is the following formula valid for any α ∈ RN ,∫
RN

ei{(z−α)·σ+[g(σ)+g′(σ)]} dσ =
1

(2π)N

∫
(RN )3

ei{(z−α−y)·t+g(t)} ei{y·ρ+g′(ρ)} dt dρ dy. (A 10)

To prove this, starting from the right hand side, we first integrate the y-variable, taking

into account that

1

(2π)N

∫
R

eiy(ρ−t)dy = δ(ρ − t),

and (A 10) follows. To make rigorous this formal argument, one can use suitable approx-

imation sequences, as in the proof of (A 4).

A direct consequence of (A 10) is

PN(z − α,Ck + C′
k) = PN(z − α,Ck) ∗z PN(z,C′

k). (A 11)

The following extension is easily seen to be true (η ∈ R, η� 0):

PN(η(z − α),Ck + C′
k) = PN((η(z − α),Ck) ∗z PN(ηz,C′

k)|ηN |. (A 12)

This relation is used in § 5.

Remark A.1 The nondegeneracy condition (A 2) is, of course, invariant under linear

transformations. Indeed, if T is a nonsingular matrix and σ = Tρ, it follows from (A8)

that

N∑
i=1

(ρT C̃iρ)2 = 0 ⇔
N∑
i=1

(σTClσTli)
2 = 0.

The last equality is true iff σTClσTli = 0 for all i = 1, . . . , N, and this in its turn is

equivalent to

(σTC1σ, σTC2σ, . . . , σTCNσ) · T = 0 ⇔
N∑
i=1

(σTCiσ)2 = 0.
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Remark A.2 It is easy to see that, with the exception of (A 4), the above proofs with

minor modifications, work even in the case where PN is a distribution. Concerning (A 4),

since in general we cannot integrate a distribution, one has first to prove that PN is a

(signed) measure. As explained in the first part of this appendix, this is true for N = 1, 2.

We expect that it is true also for N � 3 but we do not have a proof.

Appendix B Some ODEs analysis

Here we will derive the solution of the matrix differential equation (3.14). We first consider

the homogeneous problem, that is

d

dt
Ck(t) = −B(t)Ck(t) − Ck(t)B(t) − bkl(t)Cl(t), k, l = 1, 2, . . . , N, (B 1)

with Ck(0) given symmetric matrices. We recall that B(t) and Ck(t), k = 1, 2, . . . , N are

symmetric N ×N matrices with elements bij(t) and cijk(t), i, j = 1, 2, . . . , N, respectively.

We have also denoted by Φ(t) = {φij(t)}, i, j = 1, 2, . . . , N the fundamental solution of

(3.4), that is

d

dt
Φ(t) = −B(t)Φ(t), Φ(0) = IN,

where IN is the N ×N identity matrix.

We then look for the solution of (B 1) in the form

Ck(t) = Φ(t)Mk(t)Φ
T (t), k = 1, 2, . . . , N, (B 2)

for suitable matrices Mk(t). Notice in particular that Ck(0) = Mk(0). If we plug (B 2) in

(B 1) we see that the Mk(t)’s satisfy the equations

d

dt
Mk(t) = −bkl(t)Ml(t), k, l = 1, 2, . . . , N.

This can be written in matrix-block form as

d

dt

M1(t)
...

M2(t)

 = −

b11(t)IN . . . b1N(t)IN
...

. . .
...

bN1(t)IN . . . bNN(t)IN


M1(t)

...

MN(t)

 . (B 3)

The fundamental solution of (B 3) is the NN ×NN matrix

X(t) =

φ11(t)IN . . . φ1N(t)IN
...

. . .
...

φN1(t)IN . . . φNN(t)IN

 , X(0) = INN , (B 4)

whence,

Mk(t) = φkl(t)Ml(0) = φkl(t)Cl(0), k, l = 1, 2, . . . , N.
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It then follows from this and (B 2) that

Ck(t) = Φ(t) [φkl(t)Cl(0)]ΦT (t), k, l = 1, 2, . . . , N. (B 5)

We next consider the non-homogeneous case

d

dt
Ck(t) = −B(t)Ck(t) − Ck(t)B(t) − bkl(t)Cl(t) + Fk(t), k, l = 1, 2, . . . , N. (B 6)

with Fk(t) (k = 1, . . . , N) given symmetric matrices. Using the variation of constants

method we look for a particular solution of (B 6) in the form

CNH
k (t) = Φ(t) [φkl(t)Ul(t)]Φ

T (t), k, l = 1, 2, . . . , N. (B 7)

for suitable matrices Uk(t) with CNH
k (0) = Uk(0) = 0. If we plug this expression for Ck in

(B 6) we end up with

φkl
d

dt
Ul = Φ−1FkΦ

−T , Uk(0) = 0, k, l = 1, 2, . . . , N. (B 8)

The solution then of (B 6) is the sum of (B 5) and (B 7), that is (k, l = 1, 2, . . . N),

Ck(t) = Φ(t) [φkl(t)Cl(0)]ΦT (t) + Φ(t) [φkl(t)Ul(t)]Φ
T (t). (B 9)

Appendix C A phase-space projection identity

Here we will derive the projection identity (6.11).∫
R2

P2(−γẑ(u, v; q)) dq =
21/34π2

γ
|P̃2(−2− 2

3 γu, 21/6γ1/2v)|2 (C 1)

This is a particular case of a general set of projection identities derived by Berry & Wright

[5]. Let us recall a few things from Berry & Wright [5]. Let

φE(S1, S2;C1, C2, C3) := −C1S1 − C2S2 − C3(S
2
1 + S2

2 ) + S3
1 − 3S1S

2
2 , (C 2)

and define the phase integral ψE by

ψE(C1, C2, C3) =
1

2π

∫
eiφE (S1 ,S2;C1 ,C2 ,C3) dS1 dS2. (C 3)

If

C̃1 := 22/3(C1 + 2C3U1 + 3(U2
2 −U2

1 ))

C̃2 := 22/3(C2 + 2C3U2 + 6U1U2),

then, the following projection identity holds (see Berry & Wright [5], relation (27)):

|ψE(C1, C2, C3)|2 =
21/3

π

∫
R2

ψE(C̃1, C̃2, 0) dU1 dU2. (C 4)
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Let us rewrite this in terms of our notation. By setting first Si =
(

2
3

) 1
3 σi, (i = 1, 2) and

then

Ui =
γ

1
2

2
1
2 3

1
3

qi, Ci =
3

1
3

2
γui, (i = 1, 2), C3 = −3

2
3 2− 1

2 γ
1
2 v,

We have that

P2(−γẑ(u, v; q)) =

(
3

2

) 2
3 1

2π
ψE(C̃1, C̃2, 0),

and

P̃2(−2− 2
3 γu1, −2− 2

3 γu2, 21/6γ1/2v) =

(
3

2

) 2
3 1

2π
ψE(C1, C2, C3),

and (C 1) follows from (C 4).

We note that, as shown in Berry & Wright [5], similar identities hold for a large class

of caustics, including the hyperbolic umbilic, the shallow tail and other cuspoid caustics.

References

[1] Ben-Artzi, M., Koch, H. and Saut, J.-C. (2003) Dispersion estimates for third order equations

in two dimensions. Comm. Partial Diff. Equ. 28(11–12), 1943–1974.

[2] Bensoussan, A., Lions, J. L. and Papanicolaou, G. (1978) Asymptotic Analysis for Periodic

Structures. North-Holland.

[3] Berry, M. V. (1977) Semi-classical mechanics in phase space. A study of Wigner’s function.

Proc. Phil. Trans. Roy. Soc. 287, 237–271.

[4] Berry, M. V. and Balazs, N. L. (1979) Evolution of semiclassical quantum states in phase

space. J. Phys. A, 12, 625–642.

[5] Berry, M. V. and Wright, F. J. (1980) Phase-space projection identities for diffraction

catastrophes. J. Phys. A 13, 149–160.

[6] Coddington, E. A. and Levinson, N. (1984) Theory of Ordinary Differential Equations.

Krieger.

[7] Fedoryuk, M. V. (1977) The saddle point method (Metod Perelava). Nauka.

[8] Filippas, S. and Makrakis, G. N. (2003) Semiclassical Wigner function and geometrical optics.

Multiscale Model. Simul. 1(4), 674–710.

[9] Gerard, P., Markowich, P. A., Mauser, N. J. and Poupaud, F. (1977) Homogenization limits

and Wigner transforms. Comm. Pure Appl. Math. 50, 323–380.

[10] Guillemin, V. and Sternberg, S. (1977) Geometric Asymptotics. American Mathematical

Society.

[11] Haake, F. (2001) Quantum Signatures of Chaos. Springer.

[12] Hormander, L. (1971) Fourier integral operators I. Acta Mathematica, 127, 79–183.

[13] Jin, S. and Li, X. (2003) Multi-phase computations of the semiclassical limit of the Schrödinger

equation and related problems: Whitham vs. Wigner. Phys. D, 182(1–2), 46-85.

[14] Kravtsov, Yu. A. (1968) Two new asymptotic methods in the theory of wave propagation in

inhomogeneous media (review) J. Sov. Phys. Acoust. 14(1), 1–17.

[15] Lax, P. D. (2002) Functional Analysis. Wiley Interscience.

[16] Lions, P. L. and Paul, T. (1993) Sur les measures de Wigner. Rev. Math. Iberoamericana, 9,

563–618.



30 S. Filippas and G. N. Makrakis

[17] Maslov, V. P. and Fedoryuk, V. M. (1981) Semiclassical Approximations in Quantum Mechanics.

Reidel.

[18] Ozorio de Almeida, A. M. (1983) The Wigner function for two dimensional tori: Uniform

approximation and projections. Ann. Phys, 145, 100–115.

[19] Papanicolaou, G. and Ryzhik, L. (1999) Waves and transport. In: L. Cafarrelli (ed.), Hyper-

bolic Equations and Frequency Interactions, pp. 305–382. AMS.

[20] Rios, P. P. de M. and Ozorio de Almeida, A. M. (2002) On the propagation of semiclassical

Wigner functions J. Phys. A: Math. Gen. 35, 2609–2617.

[21] Sparber, C., Markowich, P. A. and Mauser, N. J. (2003) Wigner functions versus WKB-

methods in multivalued geometrical optics Asymptot. Anal. 33, 153–187.

[22] Tappert, F. (1977) The parabolic approximation method. In: J. B. Keller and J. S. Papadakis

(eds.), Wave Propagation and Underwater Acoustics, pp. 224–287. Lecture Notes in Physics

70. Springer-Verlag.

[23] Tatarskii, V. (1971) The Effects of the Turbulent Atmosphere in Wave Propagation. Israel

Program for Scientific Translation.

[24] Tatarskii, V. (1984) The Wigner representation of quantum mechanics. Sov. Phys. Usp., 26,

311–327.


